Icyblade Dai 6e378452f2 coding style update (#2752)
* coding style update

Current coding style varies(for example: the mixed use of single quote and double quote), and it will be confusing, especially for new users.
This PR will try to follow proposal of PEP8, make the documents more readable.

* minor fix
2017-10-01 08:42:15 -04:00
2017-09-28 18:15:28 -05:00
2017-10-01 08:42:15 -04:00
2017-09-17 17:13:11 +12:00
2017-09-28 18:15:28 -05:00
2017-06-25 22:32:11 -04:00
2017-09-28 18:15:28 -05:00
2017-09-08 09:57:16 +12:00
2017-09-28 18:15:28 -05:00
2017-04-25 16:37:10 -07:00

eXtreme Gradient Boosting

Build Status Build Status Documentation Status GitHub license CRAN Status Badge PyPI version Gitter chat for developers at https://gitter.im/dmlc/xgboost

Documentation | Resources | Installation | Release Notes | RoadMap

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

What's New

Ask a Question

Help to Make XGBoost Better

XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone.

License

© Contributors, 2016. Licensed under an Apache-2 license.

Reference

Description
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
Readme 33 MiB
Languages
C++ 45.5%
Python 20.3%
Cuda 15.2%
R 6.8%
Scala 6.4%
Other 5.6%