xgboost/tests/python/test_ranking.py
Jiaming Yuan 1450aebb74
Fix pairwise objective with NDCG metric along with custom gain. (#10100)
* Fix pairwise objective with NDCG metric.

- Allow setting `ndcg_exp_gain` for `rank:pairwise`.

This is useful when using pairwise for objective but ndcg for metric.
2024-03-11 14:54:10 +08:00

307 lines
11 KiB
Python

import itertools
import json
import os
import shutil
from typing import Optional
import numpy as np
import pytest
from hypothesis import given, note, settings
from scipy.sparse import csr_matrix
import xgboost
from xgboost import testing as tm
from xgboost.testing.data import RelDataCV, simulate_clicks, sort_ltr_samples
from xgboost.testing.params import lambdarank_parameter_strategy
from xgboost.testing.ranking import run_normalization
def test_ndcg_custom_gain():
def ndcg_gain(y: np.ndarray) -> np.ndarray:
return np.exp2(y.astype(np.float64)) - 1.0
X, y, q, w = tm.make_ltr(n_samples=1024, n_features=4, n_query_groups=3, max_rel=3)
y_gain = ndcg_gain(y)
byxgb = xgboost.XGBRanker(tree_method="hist", ndcg_exp_gain=True, n_estimators=10)
byxgb.fit(
X,
y,
qid=q,
sample_weight=w,
eval_set=[(X, y)],
eval_qid=(q,),
sample_weight_eval_set=(w,),
verbose=True,
)
byxgb_json = json.loads(byxgb.get_booster().save_raw(raw_format="json"))
bynp = xgboost.XGBRanker(tree_method="hist", ndcg_exp_gain=False, n_estimators=10)
bynp.fit(
X,
y_gain,
qid=q,
sample_weight=w,
eval_set=[(X, y_gain)],
eval_qid=(q,),
sample_weight_eval_set=(w,),
verbose=True,
)
bynp_json = json.loads(bynp.get_booster().save_raw(raw_format="json"))
# Remove the difference in parameter for comparison
byxgb_json["learner"]["objective"]["lambdarank_param"]["ndcg_exp_gain"] = "0"
assert byxgb.evals_result() == bynp.evals_result()
assert byxgb_json == bynp_json
# test pairwise can handle max_rel > 31, while ndcg metric is using custom gain
X, y, q, w = tm.make_ltr(n_samples=1024, n_features=4, n_query_groups=3, max_rel=33)
ranknet = xgboost.XGBRanker(
tree_method="hist",
ndcg_exp_gain=False,
n_estimators=10,
objective="rank:pairwise",
)
ranknet.fit(X, y, qid=q, eval_set=[(X, y)], eval_qid=[q])
history = ranknet.evals_result()
assert (
history["validation_0"]["ndcg@32"][0] < history["validation_0"]["ndcg@32"][-1]
)
def test_ranking_with_unweighted_data():
Xrow = np.array([1, 2, 6, 8, 11, 14, 16, 17])
Xcol = np.array([0, 0, 1, 1, 2, 2, 3, 3])
X = csr_matrix((np.ones(shape=8), (Xrow, Xcol)), shape=(20, 4))
y = np.array([0.0, 1.0, 1.0, 0.0, 0.0,
0.0, 1.0, 0.0, 1.0, 0.0,
0.0, 1.0, 0.0, 0.0, 1.0,
0.0, 1.0, 1.0, 0.0, 0.0])
group = np.array([5, 5, 5, 5], dtype=np.uint)
dtrain = xgboost.DMatrix(X, label=y)
dtrain.set_group(group)
params = {'eta': 1, 'tree_method': 'exact',
'objective': 'rank:pairwise', 'eval_metric': ['auc', 'aucpr'],
'max_depth': 1}
evals_result = {}
bst = xgboost.train(params, dtrain, 10, evals=[(dtrain, 'train')],
evals_result=evals_result)
auc_rec = evals_result['train']['auc']
assert all(p <= q for p, q in zip(auc_rec, auc_rec[1:]))
auc_rec = evals_result['train']['aucpr']
assert all(p <= q for p, q in zip(auc_rec, auc_rec[1:]))
def test_ranking_with_weighted_data():
Xrow = np.array([1, 2, 6, 8, 11, 14, 16, 17])
Xcol = np.array([0, 0, 1, 1, 2, 2, 3, 3])
X = csr_matrix((np.ones(shape=8), (Xrow, Xcol)), shape=(20, 4))
y = np.array([0.0, 1.0, 1.0, 0.0, 0.0,
0.0, 1.0, 0.0, 1.0, 0.0,
0.0, 1.0, 0.0, 0.0, 1.0,
0.0, 1.0, 1.0, 0.0, 0.0])
weights = np.array([1.0, 2.0, 3.0, 4.0])
group = np.array([5, 5, 5, 5], dtype=np.uint)
dtrain = xgboost.DMatrix(X, label=y, weight=weights)
dtrain.set_group(group)
params = {'eta': 1, 'tree_method': 'exact',
'objective': 'rank:pairwise', 'eval_metric': ['auc', 'aucpr'],
'max_depth': 1}
evals_result = {}
bst = xgboost.train(params, dtrain, 10, evals=[(dtrain, 'train')],
evals_result=evals_result)
auc_rec = evals_result['train']['auc']
assert all(p <= q for p, q in zip(auc_rec, auc_rec[1:]))
auc_rec = evals_result['train']['aucpr']
assert all(p <= q for p, q in zip(auc_rec, auc_rec[1:]))
for i in range(1, 11):
pred = bst.predict(dtrain, iteration_range=(0, i))
# is_sorted[i]: is i-th group correctly sorted by the ranking predictor?
is_sorted = []
for k in range(0, 20, 5):
ind = np.argsort(-pred[k:k+5])
z = y[ind+k]
is_sorted.append(all(i >= j for i, j in zip(z, z[1:])))
# Since we give weights 1, 2, 3, 4 to the four query groups,
# the ranking predictor will first try to correctly sort the last query group
# before correctly sorting other groups.
assert all(p <= q for p, q in zip(is_sorted, is_sorted[1:]))
def test_error_msg() -> None:
X, y, qid, w = tm.make_ltr(10, 2, 2, 2)
ranker = xgboost.XGBRanker()
with pytest.raises(ValueError, match=r"equal to the number of query groups"):
ranker.fit(X, y, qid=qid, sample_weight=y)
@given(lambdarank_parameter_strategy)
@settings(deadline=None, print_blob=True)
def test_lambdarank_parameters(params):
if params["objective"] == "rank:map":
rel = 1
else:
rel = 4
X, y, q, w = tm.make_ltr(4096, 3, 13, rel)
ranker = xgboost.XGBRanker(tree_method="hist", n_estimators=64, **params)
ranker.fit(X, y, qid=q, sample_weight=w, eval_set=[(X, y)], eval_qid=[q])
for k, v in ranker.evals_result()["validation_0"].items():
note(v)
assert v[-1] >= v[0]
assert ranker.n_features_in_ == 3
@pytest.mark.skipif(**tm.no_pandas())
@pytest.mark.skipif(**tm.no_sklearn())
def test_unbiased() -> None:
import pandas as pd
from sklearn.model_selection import train_test_split
X, y, q, w = tm.make_ltr(8192, 2, n_query_groups=6, max_rel=4)
X, Xe, y, ye, q, qe = train_test_split(X, y, q, test_size=0.2, random_state=3)
X = csr_matrix(X)
Xe = csr_matrix(Xe)
data = RelDataCV((X, y, q), (Xe, ye, qe), max_rel=4)
train, _ = simulate_clicks(data)
x, c, y, q = sort_ltr_samples(
train.X, train.y, train.qid, train.click, train.pos
)
df: Optional[pd.DataFrame] = None
class Position(xgboost.callback.TrainingCallback):
def after_training(self, model) -> bool:
nonlocal df
config = json.loads(model.save_config())
ti_plus = np.array(config["learner"]["objective"]["ti+"])
tj_minus = np.array(config["learner"]["objective"]["tj-"])
df = pd.DataFrame({"ti+": ti_plus, "tj-": tj_minus})
return model
ltr = xgboost.XGBRanker(
n_estimators=8,
tree_method="hist",
lambdarank_unbiased=True,
lambdarank_num_pair_per_sample=12,
lambdarank_pair_method="topk",
objective="rank:ndcg",
callbacks=[Position()],
boost_from_average=0,
)
ltr.fit(x, c, qid=q, eval_set=[(x, c)], eval_qid=[q])
assert df is not None
# normalized
np.testing.assert_allclose(df["ti+"].iloc[0], 1.0)
np.testing.assert_allclose(df["tj-"].iloc[0], 1.0)
# less biased on low ranks.
assert df["ti+"].iloc[-1] < df["ti+"].iloc[0]
def test_normalization() -> None:
run_normalization("cpu")
class TestRanking:
@classmethod
def setup_class(cls):
"""
Download and setup the test fixtures
"""
cls.dpath = 'demo/rank/'
(x_train, y_train, qid_train, x_test, y_test, qid_test,
x_valid, y_valid, qid_valid) = tm.data.get_mq2008(cls.dpath)
# instantiate the matrices
cls.dtrain = xgboost.DMatrix(x_train, y_train)
cls.dvalid = xgboost.DMatrix(x_valid, y_valid)
cls.dtest = xgboost.DMatrix(x_test, y_test)
# set the group counts from the query IDs
cls.dtrain.set_group([len(list(items))
for _key, items in itertools.groupby(qid_train)])
cls.dtest.set_group([len(list(items))
for _key, items in itertools.groupby(qid_test)])
cls.dvalid.set_group([len(list(items))
for _key, items in itertools.groupby(qid_valid)])
# save the query IDs for testing
cls.qid_train = qid_train
cls.qid_test = qid_test
cls.qid_valid = qid_valid
# model training parameters
cls.params = {'objective': 'rank:pairwise',
'booster': 'gbtree',
'eval_metric': ['ndcg']
}
@classmethod
def teardown_class(cls):
"""
Cleanup test artifacts from download and unpacking
:return:
"""
zip_f = cls.dpath + "MQ2008.zip"
if os.path.exists(zip_f):
os.remove(zip_f)
directory = cls.dpath + "MQ2008"
if os.path.exists(directory):
shutil.rmtree(directory)
def test_training(self):
"""
Train an XGBoost ranking model
"""
# specify validations set to watch performance
watchlist = [(self.dtest, 'eval'), (self.dtrain, 'train')]
bst = xgboost.train(self.params, self.dtrain, num_boost_round=2500,
early_stopping_rounds=10, evals=watchlist)
assert bst.best_score > 0.98
def test_cv(self):
"""
Test cross-validation with a group specified
"""
cv = xgboost.cv(self.params, self.dtrain, num_boost_round=2500,
early_stopping_rounds=10, nfold=10, as_pandas=False)
assert isinstance(cv, dict)
assert set(cv.keys()) == {
'test-ndcg-mean', 'train-ndcg-mean', 'test-ndcg-std', 'train-ndcg-std'
}, "CV results dict key mismatch."
def test_cv_no_shuffle(self):
"""
Test cross-validation with a group specified
"""
cv = xgboost.cv(self.params, self.dtrain, num_boost_round=2500,
early_stopping_rounds=10, shuffle=False, nfold=10,
as_pandas=False)
assert isinstance(cv, dict)
assert len(cv) == 4
def test_get_group(self):
"""
Retrieve the group number from the dmatrix
"""
# test the new getter
self.dtrain.get_uint_info('group_ptr')
for d, qid in [(self.dtrain, self.qid_train),
(self.dvalid, self.qid_valid),
(self.dtest, self.qid_test)]:
# size of each group
group_sizes = np.array([len(list(items))
for _key, items in itertools.groupby(qid)])
# indexes of group boundaries
group_limits = d.get_uint_info('group_ptr')
assert len(group_limits) == len(group_sizes)+1
assert np.array_equal(np.diff(group_limits), group_sizes)
assert np.array_equal(
group_sizes, np.diff(d.get_uint_info('group_ptr')))
assert np.array_equal(group_sizes, np.diff(d.get_uint_info('group_ptr')))
assert np.array_equal(group_limits, d.get_uint_info('group_ptr'))