Fix pairwise objective with NDCG metric along with custom gain. (#10100)
* Fix pairwise objective with NDCG metric. - Allow setting `ndcg_exp_gain` for `rank:pairwise`. This is useful when using pairwise for objective but ndcg for metric.
This commit is contained in:
parent
06c9702028
commit
1450aebb74
@ -474,7 +474,6 @@ class LambdaRankMAP : public LambdaRankObj<LambdaRankMAP, ltr::MAPCache> {
|
||||
public:
|
||||
void GetGradientImpl(std::int32_t iter, const HostDeviceVector<float>& predt,
|
||||
const MetaInfo& info, linalg::Matrix<GradientPair>* out_gpair) {
|
||||
CHECK(param_.ndcg_exp_gain) << "NDCG gain can not be set for the MAP objective.";
|
||||
if (ctx_->IsCUDA()) {
|
||||
return cuda_impl::LambdaRankGetGradientMAP(
|
||||
ctx_, iter, predt, info, GetCache(), ti_plus_.View(ctx_->Device()),
|
||||
@ -564,7 +563,6 @@ class LambdaRankPairwise : public LambdaRankObj<LambdaRankPairwise, ltr::Ranking
|
||||
public:
|
||||
void GetGradientImpl(std::int32_t iter, const HostDeviceVector<float>& predt,
|
||||
const MetaInfo& info, linalg::Matrix<GradientPair>* out_gpair) {
|
||||
CHECK(param_.ndcg_exp_gain) << "NDCG gain can not be set for the pairwise objective.";
|
||||
if (ctx_->IsCUDA()) {
|
||||
return cuda_impl::LambdaRankGetGradientPairwise(
|
||||
ctx_, iter, predt, info, GetCache(), ti_plus_.View(ctx_->Device()),
|
||||
@ -610,6 +608,13 @@ class LambdaRankPairwise : public LambdaRankObj<LambdaRankPairwise, ltr::Ranking
|
||||
[[nodiscard]] const char* DefaultEvalMetric() const override {
|
||||
return this->RankEvalMetric("ndcg");
|
||||
}
|
||||
|
||||
[[nodiscard]] Json DefaultMetricConfig() const override {
|
||||
Json config{Object{}};
|
||||
config["name"] = String{DefaultEvalMetric()};
|
||||
config["lambdarank_param"] = ToJson(param_);
|
||||
return config;
|
||||
}
|
||||
};
|
||||
|
||||
#if !defined(XGBOOST_USE_CUDA)
|
||||
|
||||
@ -97,4 +97,9 @@ TEST(XGBoostParameter, Update) {
|
||||
ASSERT_NEAR(p.f, 2.71828f, kRtEps);
|
||||
ASSERT_NEAR(p.d, 2.71828, kRtEps); // default
|
||||
}
|
||||
|
||||
// Just in case dmlc's use of global memory has any impact in parameters.
|
||||
UpdatableParam a, b;
|
||||
a.UpdateAllowUnknown(xgboost::Args{{"f", "2.71828"}});
|
||||
ASSERT_NE(a.f, b.f);
|
||||
}
|
||||
|
||||
@ -54,6 +54,20 @@ def test_ndcg_custom_gain():
|
||||
assert byxgb.evals_result() == bynp.evals_result()
|
||||
assert byxgb_json == bynp_json
|
||||
|
||||
# test pairwise can handle max_rel > 31, while ndcg metric is using custom gain
|
||||
X, y, q, w = tm.make_ltr(n_samples=1024, n_features=4, n_query_groups=3, max_rel=33)
|
||||
ranknet = xgboost.XGBRanker(
|
||||
tree_method="hist",
|
||||
ndcg_exp_gain=False,
|
||||
n_estimators=10,
|
||||
objective="rank:pairwise",
|
||||
)
|
||||
ranknet.fit(X, y, qid=q, eval_set=[(X, y)], eval_qid=[q])
|
||||
history = ranknet.evals_result()
|
||||
assert (
|
||||
history["validation_0"]["ndcg@32"][0] < history["validation_0"]["ndcg@32"][-1]
|
||||
)
|
||||
|
||||
|
||||
def test_ranking_with_unweighted_data():
|
||||
Xrow = np.array([1, 2, 6, 8, 11, 14, 16, 17])
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user