* Add num target model parameter, which is configured from input labels. * Change elementwise metric and indexing for weights. * Add demo. * Add tests.
611 lines
22 KiB
Plaintext
611 lines
22 KiB
Plaintext
/*!
|
|
* Copyright 2015-2019 by Contributors
|
|
* \file regression_obj.cu
|
|
* \brief Definition of single-value regression and classification objectives.
|
|
* \author Tianqi Chen, Kailong Chen
|
|
*/
|
|
|
|
#include <dmlc/omp.h>
|
|
#include <xgboost/logging.h>
|
|
#include <xgboost/objective.h>
|
|
#include <cmath>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include "xgboost/host_device_vector.h"
|
|
#include "xgboost/json.h"
|
|
#include "xgboost/parameter.h"
|
|
#include "xgboost/span.h"
|
|
|
|
#include "../common/transform.h"
|
|
#include "../common/common.h"
|
|
#include "../common/threading_utils.h"
|
|
#include "./regression_loss.h"
|
|
|
|
|
|
namespace xgboost {
|
|
namespace obj {
|
|
|
|
#if defined(XGBOOST_USE_CUDA)
|
|
DMLC_REGISTRY_FILE_TAG(regression_obj_gpu);
|
|
#endif // defined(XGBOOST_USE_CUDA)
|
|
|
|
struct RegLossParam : public XGBoostParameter<RegLossParam> {
|
|
float scale_pos_weight;
|
|
// declare parameters
|
|
DMLC_DECLARE_PARAMETER(RegLossParam) {
|
|
DMLC_DECLARE_FIELD(scale_pos_weight).set_default(1.0f).set_lower_bound(0.0f)
|
|
.describe("Scale the weight of positive examples by this factor");
|
|
}
|
|
};
|
|
|
|
template<typename Loss>
|
|
class RegLossObj : public ObjFunction {
|
|
protected:
|
|
HostDeviceVector<float> additional_input_;
|
|
|
|
public:
|
|
// 0 - label_correct flag, 1 - scale_pos_weight, 2 - is_null_weight
|
|
RegLossObj(): additional_input_(3) {}
|
|
|
|
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
|
|
param_.UpdateAllowUnknown(args);
|
|
}
|
|
|
|
struct ObjInfo Task() const override {
|
|
return Loss::Info();
|
|
}
|
|
|
|
uint32_t Targets(MetaInfo const& info) const override {
|
|
// Multi-target regression.
|
|
return std::max(static_cast<size_t>(1), info.labels.Shape(1));
|
|
}
|
|
|
|
void GetGradient(const HostDeviceVector<bst_float>& preds,
|
|
const MetaInfo &info, int,
|
|
HostDeviceVector<GradientPair>* out_gpair) override {
|
|
CHECK_EQ(preds.Size(), info.labels.Size())
|
|
<< " " << "labels are not correctly provided"
|
|
<< "preds.size=" << preds.Size() << ", label.size=" << info.labels.Size() << ", "
|
|
<< "Loss: " << Loss::Name();
|
|
size_t const ndata = preds.Size();
|
|
out_gpair->Resize(ndata);
|
|
auto device = tparam_->gpu_id;
|
|
additional_input_.HostVector().begin()[0] = 1; // Fill the label_correct flag
|
|
|
|
bool is_null_weight = info.weights_.Size() == 0;
|
|
if (!is_null_weight) {
|
|
CHECK_EQ(info.weights_.Size(), info.labels.Shape(0))
|
|
<< "Number of weights should be equal to number of data points.";
|
|
}
|
|
auto scale_pos_weight = param_.scale_pos_weight;
|
|
additional_input_.HostVector().begin()[1] = scale_pos_weight;
|
|
additional_input_.HostVector().begin()[2] = is_null_weight;
|
|
|
|
const size_t nthreads = tparam_->Threads();
|
|
bool on_device = device >= 0;
|
|
// On CPU we run the transformation each thread processing a contigious block of data
|
|
// for better performance.
|
|
const size_t n_data_blocks = std::max(static_cast<size_t>(1), (on_device ? ndata : nthreads));
|
|
const size_t block_size = ndata / n_data_blocks + !!(ndata % n_data_blocks);
|
|
auto const n_targets = std::max(info.labels.Shape(1), static_cast<size_t>(1));
|
|
|
|
common::Transform<>::Init(
|
|
[block_size, ndata, n_targets] XGBOOST_DEVICE(
|
|
size_t data_block_idx, common::Span<float> _additional_input,
|
|
common::Span<GradientPair> _out_gpair,
|
|
common::Span<const bst_float> _preds,
|
|
common::Span<const bst_float> _labels,
|
|
common::Span<const bst_float> _weights) {
|
|
const bst_float* preds_ptr = _preds.data();
|
|
const bst_float* labels_ptr = _labels.data();
|
|
const bst_float* weights_ptr = _weights.data();
|
|
GradientPair* out_gpair_ptr = _out_gpair.data();
|
|
const size_t begin = data_block_idx*block_size;
|
|
const size_t end = std::min(ndata, begin + block_size);
|
|
const float _scale_pos_weight = _additional_input[1];
|
|
const bool _is_null_weight = _additional_input[2];
|
|
|
|
for (size_t idx = begin; idx < end; ++idx) {
|
|
bst_float p = Loss::PredTransform(preds_ptr[idx]);
|
|
bst_float w = _is_null_weight ? 1.0f : weights_ptr[idx / n_targets];
|
|
bst_float label = labels_ptr[idx];
|
|
if (label == 1.0f) {
|
|
w *= _scale_pos_weight;
|
|
}
|
|
if (!Loss::CheckLabel(label)) {
|
|
// If there is an incorrect label, the host code will know.
|
|
_additional_input[0] = 0;
|
|
}
|
|
out_gpair_ptr[idx] = GradientPair(Loss::FirstOrderGradient(p, label) * w,
|
|
Loss::SecondOrderGradient(p, label) * w);
|
|
}
|
|
},
|
|
common::Range{0, static_cast<int64_t>(n_data_blocks)}, device)
|
|
.Eval(&additional_input_, out_gpair, &preds, info.labels.Data(),
|
|
&info.weights_);
|
|
|
|
auto const flag = additional_input_.HostVector().begin()[0];
|
|
if (flag == 0) {
|
|
LOG(FATAL) << Loss::LabelErrorMsg();
|
|
}
|
|
}
|
|
|
|
public:
|
|
const char* DefaultEvalMetric() const override {
|
|
return Loss::DefaultEvalMetric();
|
|
}
|
|
|
|
void PredTransform(HostDeviceVector<float> *io_preds) const override {
|
|
common::Transform<>::Init(
|
|
[] XGBOOST_DEVICE(size_t _idx, common::Span<float> _preds) {
|
|
_preds[_idx] = Loss::PredTransform(_preds[_idx]);
|
|
}, common::Range{0, static_cast<int64_t>(io_preds->Size())},
|
|
io_preds->DeviceIdx())
|
|
.Eval(io_preds);
|
|
}
|
|
|
|
float ProbToMargin(float base_score) const override {
|
|
return Loss::ProbToMargin(base_score);
|
|
}
|
|
|
|
void SaveConfig(Json* p_out) const override {
|
|
auto& out = *p_out;
|
|
out["name"] = String(Loss::Name());
|
|
out["reg_loss_param"] = ToJson(param_);
|
|
}
|
|
|
|
void LoadConfig(Json const& in) override {
|
|
FromJson(in["reg_loss_param"], ¶m_);
|
|
}
|
|
|
|
protected:
|
|
RegLossParam param_;
|
|
};
|
|
|
|
// register the objective functions
|
|
DMLC_REGISTER_PARAMETER(RegLossParam);
|
|
|
|
XGBOOST_REGISTER_OBJECTIVE(SquaredLossRegression, LinearSquareLoss::Name())
|
|
.describe("Regression with squared error.")
|
|
.set_body([]() { return new RegLossObj<LinearSquareLoss>(); });
|
|
|
|
XGBOOST_REGISTER_OBJECTIVE(SquareLogError, SquaredLogError::Name())
|
|
.describe("Regression with root mean squared logarithmic error.")
|
|
.set_body([]() { return new RegLossObj<SquaredLogError>(); });
|
|
|
|
XGBOOST_REGISTER_OBJECTIVE(LogisticRegression, LogisticRegression::Name())
|
|
.describe("Logistic regression for probability regression task.")
|
|
.set_body([]() { return new RegLossObj<LogisticRegression>(); });
|
|
|
|
XGBOOST_REGISTER_OBJECTIVE(PseudoHuberError, PseudoHuberError::Name())
|
|
.describe("Regression Pseudo Huber error.")
|
|
.set_body([]() { return new RegLossObj<PseudoHuberError>(); });
|
|
|
|
XGBOOST_REGISTER_OBJECTIVE(LogisticClassification, LogisticClassification::Name())
|
|
.describe("Logistic regression for binary classification task.")
|
|
.set_body([]() { return new RegLossObj<LogisticClassification>(); });
|
|
|
|
XGBOOST_REGISTER_OBJECTIVE(LogisticRaw, LogisticRaw::Name())
|
|
.describe("Logistic regression for classification, output score "
|
|
"before logistic transformation.")
|
|
.set_body([]() { return new RegLossObj<LogisticRaw>(); });
|
|
|
|
// Deprecated functions
|
|
XGBOOST_REGISTER_OBJECTIVE(LinearRegression, "reg:linear")
|
|
.describe("Regression with squared error.")
|
|
.set_body([]() {
|
|
LOG(WARNING) << "reg:linear is now deprecated in favor of reg:squarederror.";
|
|
return new RegLossObj<LinearSquareLoss>(); });
|
|
// End deprecated
|
|
|
|
// declare parameter
|
|
struct PoissonRegressionParam : public XGBoostParameter<PoissonRegressionParam> {
|
|
float max_delta_step;
|
|
DMLC_DECLARE_PARAMETER(PoissonRegressionParam) {
|
|
DMLC_DECLARE_FIELD(max_delta_step).set_lower_bound(0.0f).set_default(0.7f)
|
|
.describe("Maximum delta step we allow each weight estimation to be." \
|
|
" This parameter is required for possion regression.");
|
|
}
|
|
};
|
|
|
|
// poisson regression for count
|
|
class PoissonRegression : public ObjFunction {
|
|
public:
|
|
// declare functions
|
|
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
|
|
param_.UpdateAllowUnknown(args);
|
|
}
|
|
|
|
struct ObjInfo Task() const override {
|
|
return {ObjInfo::kRegression, false};
|
|
}
|
|
|
|
void GetGradient(const HostDeviceVector<bst_float>& preds,
|
|
const MetaInfo &info, int,
|
|
HostDeviceVector<GradientPair> *out_gpair) override {
|
|
CHECK_NE(info.labels.Size(), 0U) << "label set cannot be empty";
|
|
CHECK_EQ(preds.Size(), info.labels.Size()) << "labels are not correctly provided";
|
|
size_t const ndata = preds.Size();
|
|
out_gpair->Resize(ndata);
|
|
auto device = tparam_->gpu_id;
|
|
label_correct_.Resize(1);
|
|
label_correct_.Fill(1);
|
|
|
|
bool is_null_weight = info.weights_.Size() == 0;
|
|
if (!is_null_weight) {
|
|
CHECK_EQ(info.weights_.Size(), ndata)
|
|
<< "Number of weights should be equal to number of data points.";
|
|
}
|
|
bst_float max_delta_step = param_.max_delta_step;
|
|
common::Transform<>::Init(
|
|
[=] XGBOOST_DEVICE(size_t _idx,
|
|
common::Span<int> _label_correct,
|
|
common::Span<GradientPair> _out_gpair,
|
|
common::Span<const bst_float> _preds,
|
|
common::Span<const bst_float> _labels,
|
|
common::Span<const bst_float> _weights) {
|
|
bst_float p = _preds[_idx];
|
|
bst_float w = is_null_weight ? 1.0f : _weights[_idx];
|
|
bst_float y = _labels[_idx];
|
|
if (y < 0.0f) {
|
|
_label_correct[0] = 0;
|
|
}
|
|
_out_gpair[_idx] = GradientPair{(expf(p) - y) * w,
|
|
expf(p + max_delta_step) * w};
|
|
},
|
|
common::Range{0, static_cast<int64_t>(ndata)}, device).Eval(
|
|
&label_correct_, out_gpair, &preds, info.labels.Data(), &info.weights_);
|
|
// copy "label correct" flags back to host
|
|
std::vector<int>& label_correct_h = label_correct_.HostVector();
|
|
for (auto const flag : label_correct_h) {
|
|
if (flag == 0) {
|
|
LOG(FATAL) << "PoissonRegression: label must be nonnegative";
|
|
}
|
|
}
|
|
}
|
|
void PredTransform(HostDeviceVector<bst_float> *io_preds) const override {
|
|
common::Transform<>::Init(
|
|
[] XGBOOST_DEVICE(size_t _idx, common::Span<bst_float> _preds) {
|
|
_preds[_idx] = expf(_preds[_idx]);
|
|
},
|
|
common::Range{0, static_cast<int64_t>(io_preds->Size())},
|
|
io_preds->DeviceIdx())
|
|
.Eval(io_preds);
|
|
}
|
|
void EvalTransform(HostDeviceVector<bst_float> *io_preds) override {
|
|
PredTransform(io_preds);
|
|
}
|
|
bst_float ProbToMargin(bst_float base_score) const override {
|
|
return std::log(base_score);
|
|
}
|
|
const char* DefaultEvalMetric() const override {
|
|
return "poisson-nloglik";
|
|
}
|
|
|
|
void SaveConfig(Json* p_out) const override {
|
|
auto& out = *p_out;
|
|
out["name"] = String("count:poisson");
|
|
out["poisson_regression_param"] = ToJson(param_);
|
|
}
|
|
|
|
void LoadConfig(Json const& in) override {
|
|
FromJson(in["poisson_regression_param"], ¶m_);
|
|
}
|
|
|
|
private:
|
|
PoissonRegressionParam param_;
|
|
HostDeviceVector<int> label_correct_;
|
|
};
|
|
|
|
// register the objective functions
|
|
DMLC_REGISTER_PARAMETER(PoissonRegressionParam);
|
|
|
|
XGBOOST_REGISTER_OBJECTIVE(PoissonRegression, "count:poisson")
|
|
.describe("Poisson regression for count data.")
|
|
.set_body([]() { return new PoissonRegression(); });
|
|
|
|
|
|
// cox regression for survival data (negative values mean they are censored)
|
|
class CoxRegression : public ObjFunction {
|
|
public:
|
|
void Configure(
|
|
const std::vector<std::pair<std::string, std::string> >&) override {}
|
|
|
|
struct ObjInfo Task() const override {
|
|
return {ObjInfo::kRegression, false};
|
|
}
|
|
|
|
void GetGradient(const HostDeviceVector<bst_float>& preds,
|
|
const MetaInfo &info, int,
|
|
HostDeviceVector<GradientPair> *out_gpair) override {
|
|
CHECK_NE(info.labels.Size(), 0U) << "label set cannot be empty";
|
|
CHECK_EQ(preds.Size(), info.labels.Size()) << "labels are not correctly provided";
|
|
const auto& preds_h = preds.HostVector();
|
|
out_gpair->Resize(preds_h.size());
|
|
auto& gpair = out_gpair->HostVector();
|
|
const std::vector<size_t> &label_order = info.LabelAbsSort();
|
|
|
|
const omp_ulong ndata = static_cast<omp_ulong>(preds_h.size()); // NOLINT(*)
|
|
const bool is_null_weight = info.weights_.Size() == 0;
|
|
if (!is_null_weight) {
|
|
CHECK_EQ(info.weights_.Size(), ndata)
|
|
<< "Number of weights should be equal to number of data points.";
|
|
}
|
|
|
|
// pre-compute a sum
|
|
double exp_p_sum = 0; // we use double because we might need the precision with large datasets
|
|
for (omp_ulong i = 0; i < ndata; ++i) {
|
|
exp_p_sum += std::exp(preds_h[label_order[i]]);
|
|
}
|
|
|
|
// start calculating grad and hess
|
|
const auto& labels = info.labels.HostView();
|
|
double r_k = 0;
|
|
double s_k = 0;
|
|
double last_exp_p = 0.0;
|
|
double last_abs_y = 0.0;
|
|
double accumulated_sum = 0;
|
|
for (omp_ulong i = 0; i < ndata; ++i) { // NOLINT(*)
|
|
const size_t ind = label_order[i];
|
|
const double p = preds_h[ind];
|
|
const double exp_p = std::exp(p);
|
|
const double w = info.GetWeight(ind);
|
|
const double y = labels(ind);
|
|
const double abs_y = std::abs(y);
|
|
|
|
// only update the denominator after we move forward in time (labels are sorted)
|
|
// this is Breslow's method for ties
|
|
accumulated_sum += last_exp_p;
|
|
if (last_abs_y < abs_y) {
|
|
exp_p_sum -= accumulated_sum;
|
|
accumulated_sum = 0;
|
|
} else {
|
|
CHECK(last_abs_y <= abs_y) << "CoxRegression: labels must be in sorted order, " <<
|
|
"MetaInfo::LabelArgsort failed!";
|
|
}
|
|
|
|
if (y > 0) {
|
|
r_k += 1.0/exp_p_sum;
|
|
s_k += 1.0/(exp_p_sum*exp_p_sum);
|
|
}
|
|
|
|
const double grad = exp_p*r_k - static_cast<bst_float>(y > 0);
|
|
const double hess = exp_p*r_k - exp_p*exp_p * s_k;
|
|
gpair.at(ind) = GradientPair(grad * w, hess * w);
|
|
|
|
last_abs_y = abs_y;
|
|
last_exp_p = exp_p;
|
|
}
|
|
}
|
|
void PredTransform(HostDeviceVector<bst_float> *io_preds) const override {
|
|
std::vector<bst_float> &preds = io_preds->HostVector();
|
|
const long ndata = static_cast<long>(preds.size()); // NOLINT(*)
|
|
common::ParallelFor(ndata, [&](long j) { // NOLINT(*)
|
|
preds[j] = std::exp(preds[j]);
|
|
});
|
|
}
|
|
void EvalTransform(HostDeviceVector<bst_float> *io_preds) override {
|
|
PredTransform(io_preds);
|
|
}
|
|
bst_float ProbToMargin(bst_float base_score) const override {
|
|
return std::log(base_score);
|
|
}
|
|
const char* DefaultEvalMetric() const override {
|
|
return "cox-nloglik";
|
|
}
|
|
|
|
void SaveConfig(Json* p_out) const override {
|
|
auto& out = *p_out;
|
|
out["name"] = String("survival:cox");
|
|
}
|
|
void LoadConfig(Json const&) override {}
|
|
};
|
|
|
|
// register the objective function
|
|
XGBOOST_REGISTER_OBJECTIVE(CoxRegression, "survival:cox")
|
|
.describe("Cox regression for censored survival data (negative labels are considered censored).")
|
|
.set_body([]() { return new CoxRegression(); });
|
|
|
|
// gamma regression
|
|
class GammaRegression : public ObjFunction {
|
|
public:
|
|
void Configure(
|
|
const std::vector<std::pair<std::string, std::string> >&) override {}
|
|
|
|
struct ObjInfo Task() const override {
|
|
return {ObjInfo::kRegression, false};
|
|
}
|
|
|
|
void GetGradient(const HostDeviceVector<bst_float> &preds,
|
|
const MetaInfo &info, int,
|
|
HostDeviceVector<GradientPair> *out_gpair) override {
|
|
CHECK_NE(info.labels.Size(), 0U) << "label set cannot be empty";
|
|
CHECK_EQ(preds.Size(), info.labels.Size()) << "labels are not correctly provided";
|
|
const size_t ndata = preds.Size();
|
|
auto device = tparam_->gpu_id;
|
|
out_gpair->Resize(ndata);
|
|
label_correct_.Resize(1);
|
|
label_correct_.Fill(1);
|
|
|
|
const bool is_null_weight = info.weights_.Size() == 0;
|
|
if (!is_null_weight) {
|
|
CHECK_EQ(info.weights_.Size(), ndata)
|
|
<< "Number of weights should be equal to number of data points.";
|
|
}
|
|
common::Transform<>::Init(
|
|
[=] XGBOOST_DEVICE(size_t _idx,
|
|
common::Span<int> _label_correct,
|
|
common::Span<GradientPair> _out_gpair,
|
|
common::Span<const bst_float> _preds,
|
|
common::Span<const bst_float> _labels,
|
|
common::Span<const bst_float> _weights) {
|
|
bst_float p = _preds[_idx];
|
|
bst_float w = is_null_weight ? 1.0f : _weights[_idx];
|
|
bst_float y = _labels[_idx];
|
|
if (y <= 0.0f) {
|
|
_label_correct[0] = 0;
|
|
}
|
|
_out_gpair[_idx] = GradientPair((1 - y / expf(p)) * w, y / expf(p) * w);
|
|
},
|
|
common::Range{0, static_cast<int64_t>(ndata)}, device).Eval(
|
|
&label_correct_, out_gpair, &preds, info.labels.Data(), &info.weights_);
|
|
|
|
// copy "label correct" flags back to host
|
|
std::vector<int>& label_correct_h = label_correct_.HostVector();
|
|
for (auto const flag : label_correct_h) {
|
|
if (flag == 0) {
|
|
LOG(FATAL) << "GammaRegression: label must be positive.";
|
|
}
|
|
}
|
|
}
|
|
void PredTransform(HostDeviceVector<bst_float> *io_preds) const override {
|
|
common::Transform<>::Init(
|
|
[] XGBOOST_DEVICE(size_t _idx, common::Span<bst_float> _preds) {
|
|
_preds[_idx] = expf(_preds[_idx]);
|
|
},
|
|
common::Range{0, static_cast<int64_t>(io_preds->Size())},
|
|
io_preds->DeviceIdx())
|
|
.Eval(io_preds);
|
|
}
|
|
void EvalTransform(HostDeviceVector<bst_float> *io_preds) override {
|
|
PredTransform(io_preds);
|
|
}
|
|
bst_float ProbToMargin(bst_float base_score) const override {
|
|
return std::log(base_score);
|
|
}
|
|
const char* DefaultEvalMetric() const override {
|
|
return "gamma-nloglik";
|
|
}
|
|
void SaveConfig(Json* p_out) const override {
|
|
auto& out = *p_out;
|
|
out["name"] = String("reg:gamma");
|
|
}
|
|
void LoadConfig(Json const&) override {}
|
|
|
|
private:
|
|
HostDeviceVector<int> label_correct_;
|
|
};
|
|
|
|
// register the objective functions
|
|
XGBOOST_REGISTER_OBJECTIVE(GammaRegression, "reg:gamma")
|
|
.describe("Gamma regression for severity data.")
|
|
.set_body([]() { return new GammaRegression(); });
|
|
|
|
|
|
// declare parameter
|
|
struct TweedieRegressionParam : public XGBoostParameter<TweedieRegressionParam> {
|
|
float tweedie_variance_power;
|
|
DMLC_DECLARE_PARAMETER(TweedieRegressionParam) {
|
|
DMLC_DECLARE_FIELD(tweedie_variance_power).set_range(1.0f, 2.0f).set_default(1.5f)
|
|
.describe("Tweedie variance power. Must be between in range [1, 2).");
|
|
}
|
|
};
|
|
|
|
// tweedie regression
|
|
class TweedieRegression : public ObjFunction {
|
|
public:
|
|
// declare functions
|
|
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
|
|
param_.UpdateAllowUnknown(args);
|
|
std::ostringstream os;
|
|
os << "tweedie-nloglik@" << param_.tweedie_variance_power;
|
|
metric_ = os.str();
|
|
}
|
|
|
|
struct ObjInfo Task() const override {
|
|
return {ObjInfo::kRegression, false};
|
|
}
|
|
|
|
void GetGradient(const HostDeviceVector<bst_float>& preds,
|
|
const MetaInfo &info, int,
|
|
HostDeviceVector<GradientPair> *out_gpair) override {
|
|
CHECK_NE(info.labels.Size(), 0U) << "label set cannot be empty";
|
|
CHECK_EQ(preds.Size(), info.labels.Size()) << "labels are not correctly provided";
|
|
const size_t ndata = preds.Size();
|
|
out_gpair->Resize(ndata);
|
|
|
|
auto device = tparam_->gpu_id;
|
|
label_correct_.Resize(1);
|
|
label_correct_.Fill(1);
|
|
|
|
const bool is_null_weight = info.weights_.Size() == 0;
|
|
if (!is_null_weight) {
|
|
CHECK_EQ(info.weights_.Size(), ndata)
|
|
<< "Number of weights should be equal to number of data points.";
|
|
}
|
|
|
|
const float rho = param_.tweedie_variance_power;
|
|
common::Transform<>::Init(
|
|
[=] XGBOOST_DEVICE(size_t _idx,
|
|
common::Span<int> _label_correct,
|
|
common::Span<GradientPair> _out_gpair,
|
|
common::Span<const bst_float> _preds,
|
|
common::Span<const bst_float> _labels,
|
|
common::Span<const bst_float> _weights) {
|
|
bst_float p = _preds[_idx];
|
|
bst_float w = is_null_weight ? 1.0f : _weights[_idx];
|
|
bst_float y = _labels[_idx];
|
|
if (y < 0.0f) {
|
|
_label_correct[0] = 0;
|
|
}
|
|
bst_float grad = -y * expf((1 - rho) * p) + expf((2 - rho) * p);
|
|
bst_float hess =
|
|
-y * (1 - rho) * \
|
|
std::exp((1 - rho) * p) + (2 - rho) * expf((2 - rho) * p);
|
|
_out_gpair[_idx] = GradientPair(grad * w, hess * w);
|
|
},
|
|
common::Range{0, static_cast<int64_t>(ndata), 1}, device)
|
|
.Eval(&label_correct_, out_gpair, &preds, info.labels.Data(), &info.weights_);
|
|
|
|
// copy "label correct" flags back to host
|
|
std::vector<int>& label_correct_h = label_correct_.HostVector();
|
|
for (auto const flag : label_correct_h) {
|
|
if (flag == 0) {
|
|
LOG(FATAL) << "TweedieRegression: label must be nonnegative";
|
|
}
|
|
}
|
|
}
|
|
void PredTransform(HostDeviceVector<bst_float> *io_preds) const override {
|
|
common::Transform<>::Init(
|
|
[] XGBOOST_DEVICE(size_t _idx, common::Span<bst_float> _preds) {
|
|
_preds[_idx] = expf(_preds[_idx]);
|
|
},
|
|
common::Range{0, static_cast<int64_t>(io_preds->Size())},
|
|
io_preds->DeviceIdx())
|
|
.Eval(io_preds);
|
|
}
|
|
|
|
bst_float ProbToMargin(bst_float base_score) const override {
|
|
return std::log(base_score);
|
|
}
|
|
|
|
const char* DefaultEvalMetric() const override {
|
|
return metric_.c_str();
|
|
}
|
|
|
|
void SaveConfig(Json* p_out) const override {
|
|
auto& out = *p_out;
|
|
out["name"] = String("reg:tweedie");
|
|
out["tweedie_regression_param"] = ToJson(param_);
|
|
}
|
|
void LoadConfig(Json const& in) override {
|
|
FromJson(in["tweedie_regression_param"], ¶m_);
|
|
}
|
|
|
|
private:
|
|
std::string metric_;
|
|
TweedieRegressionParam param_;
|
|
HostDeviceVector<int> label_correct_;
|
|
};
|
|
|
|
// register the objective functions
|
|
DMLC_REGISTER_PARAMETER(TweedieRegressionParam);
|
|
|
|
XGBOOST_REGISTER_OBJECTIVE(TweedieRegression, "reg:tweedie")
|
|
.describe("Tweedie regression for insurance data.")
|
|
.set_body([]() { return new TweedieRegression(); });
|
|
|
|
} // namespace obj
|
|
} // namespace xgboost
|