/*! * Copyright 2015-2019 by Contributors * \file regression_obj.cu * \brief Definition of single-value regression and classification objectives. * \author Tianqi Chen, Kailong Chen */ #include #include #include #include #include #include #include "xgboost/host_device_vector.h" #include "xgboost/json.h" #include "xgboost/parameter.h" #include "xgboost/span.h" #include "../common/transform.h" #include "../common/common.h" #include "../common/threading_utils.h" #include "./regression_loss.h" namespace xgboost { namespace obj { #if defined(XGBOOST_USE_CUDA) DMLC_REGISTRY_FILE_TAG(regression_obj_gpu); #endif // defined(XGBOOST_USE_CUDA) struct RegLossParam : public XGBoostParameter { float scale_pos_weight; // declare parameters DMLC_DECLARE_PARAMETER(RegLossParam) { DMLC_DECLARE_FIELD(scale_pos_weight).set_default(1.0f).set_lower_bound(0.0f) .describe("Scale the weight of positive examples by this factor"); } }; template class RegLossObj : public ObjFunction { protected: HostDeviceVector additional_input_; public: // 0 - label_correct flag, 1 - scale_pos_weight, 2 - is_null_weight RegLossObj(): additional_input_(3) {} void Configure(const std::vector >& args) override { param_.UpdateAllowUnknown(args); } struct ObjInfo Task() const override { return Loss::Info(); } uint32_t Targets(MetaInfo const& info) const override { // Multi-target regression. return std::max(static_cast(1), info.labels.Shape(1)); } void GetGradient(const HostDeviceVector& preds, const MetaInfo &info, int, HostDeviceVector* out_gpair) override { CHECK_EQ(preds.Size(), info.labels.Size()) << " " << "labels are not correctly provided" << "preds.size=" << preds.Size() << ", label.size=" << info.labels.Size() << ", " << "Loss: " << Loss::Name(); size_t const ndata = preds.Size(); out_gpair->Resize(ndata); auto device = tparam_->gpu_id; additional_input_.HostVector().begin()[0] = 1; // Fill the label_correct flag bool is_null_weight = info.weights_.Size() == 0; if (!is_null_weight) { CHECK_EQ(info.weights_.Size(), info.labels.Shape(0)) << "Number of weights should be equal to number of data points."; } auto scale_pos_weight = param_.scale_pos_weight; additional_input_.HostVector().begin()[1] = scale_pos_weight; additional_input_.HostVector().begin()[2] = is_null_weight; const size_t nthreads = tparam_->Threads(); bool on_device = device >= 0; // On CPU we run the transformation each thread processing a contigious block of data // for better performance. const size_t n_data_blocks = std::max(static_cast(1), (on_device ? ndata : nthreads)); const size_t block_size = ndata / n_data_blocks + !!(ndata % n_data_blocks); auto const n_targets = std::max(info.labels.Shape(1), static_cast(1)); common::Transform<>::Init( [block_size, ndata, n_targets] XGBOOST_DEVICE( size_t data_block_idx, common::Span _additional_input, common::Span _out_gpair, common::Span _preds, common::Span _labels, common::Span _weights) { const bst_float* preds_ptr = _preds.data(); const bst_float* labels_ptr = _labels.data(); const bst_float* weights_ptr = _weights.data(); GradientPair* out_gpair_ptr = _out_gpair.data(); const size_t begin = data_block_idx*block_size; const size_t end = std::min(ndata, begin + block_size); const float _scale_pos_weight = _additional_input[1]; const bool _is_null_weight = _additional_input[2]; for (size_t idx = begin; idx < end; ++idx) { bst_float p = Loss::PredTransform(preds_ptr[idx]); bst_float w = _is_null_weight ? 1.0f : weights_ptr[idx / n_targets]; bst_float label = labels_ptr[idx]; if (label == 1.0f) { w *= _scale_pos_weight; } if (!Loss::CheckLabel(label)) { // If there is an incorrect label, the host code will know. _additional_input[0] = 0; } out_gpair_ptr[idx] = GradientPair(Loss::FirstOrderGradient(p, label) * w, Loss::SecondOrderGradient(p, label) * w); } }, common::Range{0, static_cast(n_data_blocks)}, device) .Eval(&additional_input_, out_gpair, &preds, info.labels.Data(), &info.weights_); auto const flag = additional_input_.HostVector().begin()[0]; if (flag == 0) { LOG(FATAL) << Loss::LabelErrorMsg(); } } public: const char* DefaultEvalMetric() const override { return Loss::DefaultEvalMetric(); } void PredTransform(HostDeviceVector *io_preds) const override { common::Transform<>::Init( [] XGBOOST_DEVICE(size_t _idx, common::Span _preds) { _preds[_idx] = Loss::PredTransform(_preds[_idx]); }, common::Range{0, static_cast(io_preds->Size())}, io_preds->DeviceIdx()) .Eval(io_preds); } float ProbToMargin(float base_score) const override { return Loss::ProbToMargin(base_score); } void SaveConfig(Json* p_out) const override { auto& out = *p_out; out["name"] = String(Loss::Name()); out["reg_loss_param"] = ToJson(param_); } void LoadConfig(Json const& in) override { FromJson(in["reg_loss_param"], ¶m_); } protected: RegLossParam param_; }; // register the objective functions DMLC_REGISTER_PARAMETER(RegLossParam); XGBOOST_REGISTER_OBJECTIVE(SquaredLossRegression, LinearSquareLoss::Name()) .describe("Regression with squared error.") .set_body([]() { return new RegLossObj(); }); XGBOOST_REGISTER_OBJECTIVE(SquareLogError, SquaredLogError::Name()) .describe("Regression with root mean squared logarithmic error.") .set_body([]() { return new RegLossObj(); }); XGBOOST_REGISTER_OBJECTIVE(LogisticRegression, LogisticRegression::Name()) .describe("Logistic regression for probability regression task.") .set_body([]() { return new RegLossObj(); }); XGBOOST_REGISTER_OBJECTIVE(PseudoHuberError, PseudoHuberError::Name()) .describe("Regression Pseudo Huber error.") .set_body([]() { return new RegLossObj(); }); XGBOOST_REGISTER_OBJECTIVE(LogisticClassification, LogisticClassification::Name()) .describe("Logistic regression for binary classification task.") .set_body([]() { return new RegLossObj(); }); XGBOOST_REGISTER_OBJECTIVE(LogisticRaw, LogisticRaw::Name()) .describe("Logistic regression for classification, output score " "before logistic transformation.") .set_body([]() { return new RegLossObj(); }); // Deprecated functions XGBOOST_REGISTER_OBJECTIVE(LinearRegression, "reg:linear") .describe("Regression with squared error.") .set_body([]() { LOG(WARNING) << "reg:linear is now deprecated in favor of reg:squarederror."; return new RegLossObj(); }); // End deprecated // declare parameter struct PoissonRegressionParam : public XGBoostParameter { float max_delta_step; DMLC_DECLARE_PARAMETER(PoissonRegressionParam) { DMLC_DECLARE_FIELD(max_delta_step).set_lower_bound(0.0f).set_default(0.7f) .describe("Maximum delta step we allow each weight estimation to be." \ " This parameter is required for possion regression."); } }; // poisson regression for count class PoissonRegression : public ObjFunction { public: // declare functions void Configure(const std::vector >& args) override { param_.UpdateAllowUnknown(args); } struct ObjInfo Task() const override { return {ObjInfo::kRegression, false}; } void GetGradient(const HostDeviceVector& preds, const MetaInfo &info, int, HostDeviceVector *out_gpair) override { CHECK_NE(info.labels.Size(), 0U) << "label set cannot be empty"; CHECK_EQ(preds.Size(), info.labels.Size()) << "labels are not correctly provided"; size_t const ndata = preds.Size(); out_gpair->Resize(ndata); auto device = tparam_->gpu_id; label_correct_.Resize(1); label_correct_.Fill(1); bool is_null_weight = info.weights_.Size() == 0; if (!is_null_weight) { CHECK_EQ(info.weights_.Size(), ndata) << "Number of weights should be equal to number of data points."; } bst_float max_delta_step = param_.max_delta_step; common::Transform<>::Init( [=] XGBOOST_DEVICE(size_t _idx, common::Span _label_correct, common::Span _out_gpair, common::Span _preds, common::Span _labels, common::Span _weights) { bst_float p = _preds[_idx]; bst_float w = is_null_weight ? 1.0f : _weights[_idx]; bst_float y = _labels[_idx]; if (y < 0.0f) { _label_correct[0] = 0; } _out_gpair[_idx] = GradientPair{(expf(p) - y) * w, expf(p + max_delta_step) * w}; }, common::Range{0, static_cast(ndata)}, device).Eval( &label_correct_, out_gpair, &preds, info.labels.Data(), &info.weights_); // copy "label correct" flags back to host std::vector& label_correct_h = label_correct_.HostVector(); for (auto const flag : label_correct_h) { if (flag == 0) { LOG(FATAL) << "PoissonRegression: label must be nonnegative"; } } } void PredTransform(HostDeviceVector *io_preds) const override { common::Transform<>::Init( [] XGBOOST_DEVICE(size_t _idx, common::Span _preds) { _preds[_idx] = expf(_preds[_idx]); }, common::Range{0, static_cast(io_preds->Size())}, io_preds->DeviceIdx()) .Eval(io_preds); } void EvalTransform(HostDeviceVector *io_preds) override { PredTransform(io_preds); } bst_float ProbToMargin(bst_float base_score) const override { return std::log(base_score); } const char* DefaultEvalMetric() const override { return "poisson-nloglik"; } void SaveConfig(Json* p_out) const override { auto& out = *p_out; out["name"] = String("count:poisson"); out["poisson_regression_param"] = ToJson(param_); } void LoadConfig(Json const& in) override { FromJson(in["poisson_regression_param"], ¶m_); } private: PoissonRegressionParam param_; HostDeviceVector label_correct_; }; // register the objective functions DMLC_REGISTER_PARAMETER(PoissonRegressionParam); XGBOOST_REGISTER_OBJECTIVE(PoissonRegression, "count:poisson") .describe("Poisson regression for count data.") .set_body([]() { return new PoissonRegression(); }); // cox regression for survival data (negative values mean they are censored) class CoxRegression : public ObjFunction { public: void Configure( const std::vector >&) override {} struct ObjInfo Task() const override { return {ObjInfo::kRegression, false}; } void GetGradient(const HostDeviceVector& preds, const MetaInfo &info, int, HostDeviceVector *out_gpair) override { CHECK_NE(info.labels.Size(), 0U) << "label set cannot be empty"; CHECK_EQ(preds.Size(), info.labels.Size()) << "labels are not correctly provided"; const auto& preds_h = preds.HostVector(); out_gpair->Resize(preds_h.size()); auto& gpair = out_gpair->HostVector(); const std::vector &label_order = info.LabelAbsSort(); const omp_ulong ndata = static_cast(preds_h.size()); // NOLINT(*) const bool is_null_weight = info.weights_.Size() == 0; if (!is_null_weight) { CHECK_EQ(info.weights_.Size(), ndata) << "Number of weights should be equal to number of data points."; } // pre-compute a sum double exp_p_sum = 0; // we use double because we might need the precision with large datasets for (omp_ulong i = 0; i < ndata; ++i) { exp_p_sum += std::exp(preds_h[label_order[i]]); } // start calculating grad and hess const auto& labels = info.labels.HostView(); double r_k = 0; double s_k = 0; double last_exp_p = 0.0; double last_abs_y = 0.0; double accumulated_sum = 0; for (omp_ulong i = 0; i < ndata; ++i) { // NOLINT(*) const size_t ind = label_order[i]; const double p = preds_h[ind]; const double exp_p = std::exp(p); const double w = info.GetWeight(ind); const double y = labels(ind); const double abs_y = std::abs(y); // only update the denominator after we move forward in time (labels are sorted) // this is Breslow's method for ties accumulated_sum += last_exp_p; if (last_abs_y < abs_y) { exp_p_sum -= accumulated_sum; accumulated_sum = 0; } else { CHECK(last_abs_y <= abs_y) << "CoxRegression: labels must be in sorted order, " << "MetaInfo::LabelArgsort failed!"; } if (y > 0) { r_k += 1.0/exp_p_sum; s_k += 1.0/(exp_p_sum*exp_p_sum); } const double grad = exp_p*r_k - static_cast(y > 0); const double hess = exp_p*r_k - exp_p*exp_p * s_k; gpair.at(ind) = GradientPair(grad * w, hess * w); last_abs_y = abs_y; last_exp_p = exp_p; } } void PredTransform(HostDeviceVector *io_preds) const override { std::vector &preds = io_preds->HostVector(); const long ndata = static_cast(preds.size()); // NOLINT(*) common::ParallelFor(ndata, [&](long j) { // NOLINT(*) preds[j] = std::exp(preds[j]); }); } void EvalTransform(HostDeviceVector *io_preds) override { PredTransform(io_preds); } bst_float ProbToMargin(bst_float base_score) const override { return std::log(base_score); } const char* DefaultEvalMetric() const override { return "cox-nloglik"; } void SaveConfig(Json* p_out) const override { auto& out = *p_out; out["name"] = String("survival:cox"); } void LoadConfig(Json const&) override {} }; // register the objective function XGBOOST_REGISTER_OBJECTIVE(CoxRegression, "survival:cox") .describe("Cox regression for censored survival data (negative labels are considered censored).") .set_body([]() { return new CoxRegression(); }); // gamma regression class GammaRegression : public ObjFunction { public: void Configure( const std::vector >&) override {} struct ObjInfo Task() const override { return {ObjInfo::kRegression, false}; } void GetGradient(const HostDeviceVector &preds, const MetaInfo &info, int, HostDeviceVector *out_gpair) override { CHECK_NE(info.labels.Size(), 0U) << "label set cannot be empty"; CHECK_EQ(preds.Size(), info.labels.Size()) << "labels are not correctly provided"; const size_t ndata = preds.Size(); auto device = tparam_->gpu_id; out_gpair->Resize(ndata); label_correct_.Resize(1); label_correct_.Fill(1); const bool is_null_weight = info.weights_.Size() == 0; if (!is_null_weight) { CHECK_EQ(info.weights_.Size(), ndata) << "Number of weights should be equal to number of data points."; } common::Transform<>::Init( [=] XGBOOST_DEVICE(size_t _idx, common::Span _label_correct, common::Span _out_gpair, common::Span _preds, common::Span _labels, common::Span _weights) { bst_float p = _preds[_idx]; bst_float w = is_null_weight ? 1.0f : _weights[_idx]; bst_float y = _labels[_idx]; if (y <= 0.0f) { _label_correct[0] = 0; } _out_gpair[_idx] = GradientPair((1 - y / expf(p)) * w, y / expf(p) * w); }, common::Range{0, static_cast(ndata)}, device).Eval( &label_correct_, out_gpair, &preds, info.labels.Data(), &info.weights_); // copy "label correct" flags back to host std::vector& label_correct_h = label_correct_.HostVector(); for (auto const flag : label_correct_h) { if (flag == 0) { LOG(FATAL) << "GammaRegression: label must be positive."; } } } void PredTransform(HostDeviceVector *io_preds) const override { common::Transform<>::Init( [] XGBOOST_DEVICE(size_t _idx, common::Span _preds) { _preds[_idx] = expf(_preds[_idx]); }, common::Range{0, static_cast(io_preds->Size())}, io_preds->DeviceIdx()) .Eval(io_preds); } void EvalTransform(HostDeviceVector *io_preds) override { PredTransform(io_preds); } bst_float ProbToMargin(bst_float base_score) const override { return std::log(base_score); } const char* DefaultEvalMetric() const override { return "gamma-nloglik"; } void SaveConfig(Json* p_out) const override { auto& out = *p_out; out["name"] = String("reg:gamma"); } void LoadConfig(Json const&) override {} private: HostDeviceVector label_correct_; }; // register the objective functions XGBOOST_REGISTER_OBJECTIVE(GammaRegression, "reg:gamma") .describe("Gamma regression for severity data.") .set_body([]() { return new GammaRegression(); }); // declare parameter struct TweedieRegressionParam : public XGBoostParameter { float tweedie_variance_power; DMLC_DECLARE_PARAMETER(TweedieRegressionParam) { DMLC_DECLARE_FIELD(tweedie_variance_power).set_range(1.0f, 2.0f).set_default(1.5f) .describe("Tweedie variance power. Must be between in range [1, 2)."); } }; // tweedie regression class TweedieRegression : public ObjFunction { public: // declare functions void Configure(const std::vector >& args) override { param_.UpdateAllowUnknown(args); std::ostringstream os; os << "tweedie-nloglik@" << param_.tweedie_variance_power; metric_ = os.str(); } struct ObjInfo Task() const override { return {ObjInfo::kRegression, false}; } void GetGradient(const HostDeviceVector& preds, const MetaInfo &info, int, HostDeviceVector *out_gpair) override { CHECK_NE(info.labels.Size(), 0U) << "label set cannot be empty"; CHECK_EQ(preds.Size(), info.labels.Size()) << "labels are not correctly provided"; const size_t ndata = preds.Size(); out_gpair->Resize(ndata); auto device = tparam_->gpu_id; label_correct_.Resize(1); label_correct_.Fill(1); const bool is_null_weight = info.weights_.Size() == 0; if (!is_null_weight) { CHECK_EQ(info.weights_.Size(), ndata) << "Number of weights should be equal to number of data points."; } const float rho = param_.tweedie_variance_power; common::Transform<>::Init( [=] XGBOOST_DEVICE(size_t _idx, common::Span _label_correct, common::Span _out_gpair, common::Span _preds, common::Span _labels, common::Span _weights) { bst_float p = _preds[_idx]; bst_float w = is_null_weight ? 1.0f : _weights[_idx]; bst_float y = _labels[_idx]; if (y < 0.0f) { _label_correct[0] = 0; } bst_float grad = -y * expf((1 - rho) * p) + expf((2 - rho) * p); bst_float hess = -y * (1 - rho) * \ std::exp((1 - rho) * p) + (2 - rho) * expf((2 - rho) * p); _out_gpair[_idx] = GradientPair(grad * w, hess * w); }, common::Range{0, static_cast(ndata), 1}, device) .Eval(&label_correct_, out_gpair, &preds, info.labels.Data(), &info.weights_); // copy "label correct" flags back to host std::vector& label_correct_h = label_correct_.HostVector(); for (auto const flag : label_correct_h) { if (flag == 0) { LOG(FATAL) << "TweedieRegression: label must be nonnegative"; } } } void PredTransform(HostDeviceVector *io_preds) const override { common::Transform<>::Init( [] XGBOOST_DEVICE(size_t _idx, common::Span _preds) { _preds[_idx] = expf(_preds[_idx]); }, common::Range{0, static_cast(io_preds->Size())}, io_preds->DeviceIdx()) .Eval(io_preds); } bst_float ProbToMargin(bst_float base_score) const override { return std::log(base_score); } const char* DefaultEvalMetric() const override { return metric_.c_str(); } void SaveConfig(Json* p_out) const override { auto& out = *p_out; out["name"] = String("reg:tweedie"); out["tweedie_regression_param"] = ToJson(param_); } void LoadConfig(Json const& in) override { FromJson(in["tweedie_regression_param"], ¶m_); } private: std::string metric_; TweedieRegressionParam param_; HostDeviceVector label_correct_; }; // register the objective functions DMLC_REGISTER_PARAMETER(TweedieRegressionParam); XGBOOST_REGISTER_OBJECTIVE(TweedieRegression, "reg:tweedie") .describe("Tweedie regression for insurance data.") .set_body([]() { return new TweedieRegression(); }); } // namespace obj } // namespace xgboost