xgboost/tests/python-gpu/test_from_columnar.py
Jiaming Yuan 5374f52531
Complete cudf support. (#4850)
* Handles missing value.
* Accept all floating point and integer types.
* Move to cudf 9.0 API.
* Remove requirement on `null_count`.
* Arbitrary column types support.
2019-09-16 23:52:00 -04:00

55 lines
1.4 KiB
Python

import numpy as np
import xgboost as xgb
import sys
import pytest
sys.path.append("tests/python")
import testing as tm
def dmatrix_from_cudf(input_type, missing=np.NAN):
'''Test constructing DMatrix from cudf'''
import cudf
import pandas as pd
kRows = 80
kCols = 3
na = np.random.randn(kRows, kCols)
na[:, 0:2] = na[:, 0:2].astype(input_type)
na[5, 0] = missing
na[3, 1] = missing
pa = pd.DataFrame({'0': na[:, 0],
'1': na[:, 1],
'2': na[:, 2].astype(np.int32)})
np_label = np.random.randn(kRows).astype(input_type)
pa_label = pd.DataFrame(np_label)
cd: cudf.DataFrame = cudf.from_pandas(pa)
cd_label: cudf.DataFrame = cudf.from_pandas(pa_label)
dtrain = xgb.DMatrix(cd, missing=missing, label=cd_label)
assert dtrain.num_col() == kCols
assert dtrain.num_row() == kRows
class TestFromColumnar:
'''Tests for constructing DMatrix from data structure conforming Apache
Arrow specification.'''
@pytest.mark.skipif(**tm.no_cudf())
def test_from_cudf(self):
'''Test constructing DMatrix from cudf'''
dmatrix_from_cudf(np.float32, np.NAN)
dmatrix_from_cudf(np.float64, np.NAN)
dmatrix_from_cudf(np.uint8, 2)
dmatrix_from_cudf(np.uint32, 3)
dmatrix_from_cudf(np.uint64, 4)
dmatrix_from_cudf(np.int8, 2)
dmatrix_from_cudf(np.int32, -2)
dmatrix_from_cudf(np.int64, -3)