import numpy as np import xgboost as xgb import sys import pytest sys.path.append("tests/python") import testing as tm def dmatrix_from_cudf(input_type, missing=np.NAN): '''Test constructing DMatrix from cudf''' import cudf import pandas as pd kRows = 80 kCols = 3 na = np.random.randn(kRows, kCols) na[:, 0:2] = na[:, 0:2].astype(input_type) na[5, 0] = missing na[3, 1] = missing pa = pd.DataFrame({'0': na[:, 0], '1': na[:, 1], '2': na[:, 2].astype(np.int32)}) np_label = np.random.randn(kRows).astype(input_type) pa_label = pd.DataFrame(np_label) cd: cudf.DataFrame = cudf.from_pandas(pa) cd_label: cudf.DataFrame = cudf.from_pandas(pa_label) dtrain = xgb.DMatrix(cd, missing=missing, label=cd_label) assert dtrain.num_col() == kCols assert dtrain.num_row() == kRows class TestFromColumnar: '''Tests for constructing DMatrix from data structure conforming Apache Arrow specification.''' @pytest.mark.skipif(**tm.no_cudf()) def test_from_cudf(self): '''Test constructing DMatrix from cudf''' dmatrix_from_cudf(np.float32, np.NAN) dmatrix_from_cudf(np.float64, np.NAN) dmatrix_from_cudf(np.uint8, 2) dmatrix_from_cudf(np.uint32, 3) dmatrix_from_cudf(np.uint64, 4) dmatrix_from_cudf(np.int8, 2) dmatrix_from_cudf(np.int32, -2) dmatrix_from_cudf(np.int64, -3)