Yanbo Liang 2c4359e914 [jvm-packages] XGBoost Spark integration refactor (#3387)
* add back train method but mark as deprecated

* add back train method but mark as deprecated

* fix scalastyle error

* fix scalastyle error

* [jvm-packages] XGBoost Spark integration refactor. (#3313)

* XGBoost Spark integration refactor.

* Make corresponding update for xgboost4j-example

* Address comments.

* [jvm-packages] Refactor XGBoost-Spark params to make it compatible with both XGBoost and Spark MLLib (#3326)

* Refactor XGBoost-Spark params to make it compatible with both XGBoost and Spark MLLib

* Fix extra space.

* [jvm-packages] XGBoost Spark supports ranking with group data. (#3369)

* XGBoost Spark supports ranking with group data.

* Use Iterator.duplicate to prevent OOM.

* Update CheckpointManagerSuite.scala

* Resolve conflicts
2018-06-18 15:39:18 -07:00

3.1 KiB

1010.02290178997.301784955620.1181150200171
209.936396218599.931021592910.04350300043961
3010.13017372650.004117652205722.41658780531
419.878285870870.6085884149920.1112625908831
5010.13734300480.477640122250.9915530521941
6010.05238147184.721525051670.6729788326661
7010.04497157428.403739285360.3844575736671
81996.398498791941.9763091540.2302692312922
901005.11269468900.0936808770.2650315288732
100997.160349441891.3311016882.193620173132
110993.75413903144.80001653171.038680098752
121994.831299184241.9592084530.6676318270242
130995.9483332837.943269171120.7504908771183
140989.7339812737.520776254360.01263359672823
1501003.540865166.481775105641.194416967883
160996.561778049.719598126131.330824651113
1701005.613824670.2343393693091.179877973563
181980.2157587086.855545429262.639650852593
191987.7764088722.233546099910.8418852780283
2001006.542603968.121420498342.266394711743
2101009.879276396.400285190440.7751556696153
2209.95006244393928.76896718234.9484582444
23110.0749152258255.29457447662.97286041664
24110.1916541988312.68286708592.2994136774
2509.95646724484742.26318841653.33104736544
2609.86211293222996.2370238662.007603011684
2719.91801019468303.97178370950.31472306794
280996.9839969349.521882227661.335881209815
290995.7043881269.492605249150.9084985165415
300987.864807670.08707867168210.1088592978375
3101000.995613072.852726945750.1711345189565
3201011.055080667.553367717681.049500848255
331985.521993650.7633057806081.74024243755
34010.0430321467813.1854271814.977282541856
35010.0812334228258.2972884170.1274776705496
3609.84210504292887.2058152610.9916891939556
3719.946253326130.2986227621320.1478813532316
3809.97800659954727.6198197570.07183611418666
3919.8037938472957.3855496170.06188620289416
40010.0880634741185.0246385771.70280950956
4109.98630799154109.106314730.6811173597516
4209.91671416638166.248076588122.5382910947
43010.120691046488.1539468531141.1898590697
44110.17671605181.02960996847172.022562377
4509.93025147233391.19664194258.0403382477
4609.84850936037474.6334653717.56278753977
4719.816273134361.919955421330.67409728517
48010.0403482984987.5041692973.04729062097
491997.019228359133.2947176630.05722540831868
500973.3039991071.790808888490.1004787170488
5101008.28808825342.2823506850.4098064854958
5201014.556215240.6805104070820.9295306024958
5311012.74370325823.1052664550.08946937305858
5401003.63554038727.3344320750.582062757568
55010.1560432436740.3593830711.68233785339
5609.83949099701512.828227154138.2066666819
57110.1837395682179.287126088185.4790623659
5819.976188149512.10933883369.12646041719
5919.77402180766318.56131774380.60052213559
6001011.157053810.2158258521551.3442966790610
6101005.60353229727.2023461261.4714604100510
6211013.9370296158.73127252050.42104156075410
6301004.86813074757.6932042580.56605520534410
640999.996324692813.123868280.86442827951310
650996.55255931918.7600569950.4336505197410
6611004.1394132464.3718236460.31249228832110