xgboost/src/tree/updater_gpu_common.cuh
Rory Mitchell 40c6e2f0c8
Improved gpu_hist_experimental algorithm (#2866)
- Implement colsampling, subsampling for gpu_hist_experimental

 - Optimised multi-GPU implementation for gpu_hist_experimental

 - Make nccl optional

 - Add Volta architecture flag

 - Optimise RegLossObj

 - Add timing utilities for debug verbose mode

 - Bump required cuda version to 8.0
2017-11-11 13:58:40 +13:00

433 lines
13 KiB
Plaintext

/*!
* Copyright 2017 XGBoost contributors
*/
#pragma once
#include <thrust/random.h>
#include <cstdio>
#include <cub/cub.cuh>
#include <stdexcept>
#include <string>
#include <vector>
#include "../common/device_helpers.cuh"
#include "../common/random.h"
#include "param.h"
#if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 600
#else
__device__ __forceinline__ double atomicAdd(double* address, double val) {
unsigned long long int* address_as_ull = (unsigned long long int*)address; // NOLINT
unsigned long long int old = *address_as_ull, assumed; // NOLINT
do {
assumed = old;
old = atomicCAS(address_as_ull, assumed,
__double_as_longlong(val + __longlong_as_double(assumed)));
// Note: uses integer comparison to avoid hang in case of NaN (since NaN !=
// NaN)
} while (assumed != old);
return __longlong_as_double(old);
}
#endif
namespace xgboost {
namespace tree {
// Atomic add function for double precision gradients
__device__ __forceinline__ void AtomicAddGpair(bst_gpair_precise* dest,
const bst_gpair& gpair) {
auto dst_ptr = reinterpret_cast<double*>(dest);
atomicAdd(dst_ptr, static_cast<double>(gpair.GetGrad()));
atomicAdd(dst_ptr + 1, static_cast<double>(gpair.GetHess()));
}
// For integer gradients
__device__ __forceinline__ void AtomicAddGpair(bst_gpair_integer* dest,
const bst_gpair& gpair) {
auto dst_ptr = reinterpret_cast<unsigned long long int*>(dest); // NOLINT
bst_gpair_integer tmp(gpair.GetGrad(), gpair.GetHess());
auto src_ptr = reinterpret_cast<bst_gpair_integer::value_t*>(&tmp);
atomicAdd(dst_ptr,
static_cast<unsigned long long int>(*src_ptr)); // NOLINT
atomicAdd(dst_ptr + 1,
static_cast<unsigned long long int>(*(src_ptr + 1))); // NOLINT
}
/**
* \fn void CheckGradientMax(const dh::dvec<bst_gpair>& gpair)
*
* \brief Check maximum gradient value is below 2^16. This is to prevent
* overflow when using integer gradient summation.
*/
inline void CheckGradientMax(const std::vector<bst_gpair>& gpair) {
auto* ptr = reinterpret_cast<const float*>(gpair.data());
float abs_max =
std::accumulate(ptr, ptr + (gpair.size() * 2), 0.f,
[=](float a, float b) { return max(abs(a), abs(b)); });
CHECK_LT(abs_max, std::pow(2.0f, 16.0f))
<< "Labels are too large for this algorithm. Rescale to less than 2^16.";
}
struct GPUTrainingParam {
// minimum amount of hessian(weight) allowed in a child
float min_child_weight;
// L2 regularization factor
float reg_lambda;
// L1 regularization factor
float reg_alpha;
// maximum delta update we can add in weight estimation
// this parameter can be used to stabilize update
// default=0 means no constraint on weight delta
float max_delta_step;
__host__ __device__ GPUTrainingParam() {}
__host__ __device__ GPUTrainingParam(const TrainParam& param)
: min_child_weight(param.min_child_weight),
reg_lambda(param.reg_lambda),
reg_alpha(param.reg_alpha),
max_delta_step(param.max_delta_step) {}
};
typedef int node_id_t;
/** used to assign default id to a Node */
static const int UNUSED_NODE = -1;
/**
* @enum DefaultDirection node.cuh
* @brief Default direction to be followed in case of missing values
*/
enum DefaultDirection {
/** move to left child */
LeftDir = 0,
/** move to right child */
RightDir
};
struct DeviceSplitCandidate {
float loss_chg;
DefaultDirection dir;
float fvalue;
int findex;
bst_gpair_integer left_sum;
bst_gpair_integer right_sum;
__host__ __device__ DeviceSplitCandidate()
: loss_chg(-FLT_MAX), dir(LeftDir), fvalue(0), findex(-1) {}
template <typename param_t>
__host__ __device__ void Update(const DeviceSplitCandidate& other,
const param_t& param) {
if (other.loss_chg > loss_chg &&
other.left_sum.GetHess() >= param.min_child_weight &&
other.right_sum.GetHess() >= param.min_child_weight) {
*this = other;
}
}
__device__ void Update(float loss_chg_in, DefaultDirection dir_in,
float fvalue_in, int findex_in,
bst_gpair_integer left_sum_in,
bst_gpair_integer right_sum_in,
const GPUTrainingParam& param) {
if (loss_chg_in > loss_chg &&
left_sum_in.GetHess() >= param.min_child_weight &&
right_sum_in.GetHess() >= param.min_child_weight) {
loss_chg = loss_chg_in;
dir = dir_in;
fvalue = fvalue_in;
left_sum = left_sum_in;
right_sum = right_sum_in;
findex = findex_in;
}
}
__device__ bool IsValid() const { return loss_chg > 0.0f; }
};
struct DeviceNodeStats {
bst_gpair sum_gradients;
float root_gain;
float weight;
/** default direction for missing values */
DefaultDirection dir;
/** threshold value for comparison */
float fvalue;
bst_gpair left_sum;
bst_gpair right_sum;
/** \brief The feature index. */
int fidx;
/** node id (used as key for reduce/scan) */
node_id_t idx;
HOST_DEV_INLINE DeviceNodeStats()
: sum_gradients(),
root_gain(-FLT_MAX),
weight(-FLT_MAX),
dir(LeftDir),
fvalue(0.f),
left_sum(),
right_sum(),
fidx(UNUSED_NODE),
idx(UNUSED_NODE) {}
template <typename param_t>
HOST_DEV_INLINE DeviceNodeStats(bst_gpair sum_gradients, node_id_t nidx,
const param_t& param)
: sum_gradients(sum_gradients),
dir(LeftDir),
fvalue(0.f),
fidx(UNUSED_NODE),
idx(nidx) {
this->root_gain =
CalcGain(param, sum_gradients.GetGrad(), sum_gradients.GetHess());
this->weight =
CalcWeight(param, sum_gradients.GetGrad(), sum_gradients.GetHess());
}
HOST_DEV_INLINE void SetSplit(float fvalue, int fidx, DefaultDirection dir,
bst_gpair left_sum, bst_gpair right_sum) {
this->fvalue = fvalue;
this->fidx = fidx;
this->dir = dir;
this->left_sum = left_sum;
this->right_sum = right_sum;
}
HOST_DEV_INLINE void SetSplit(const DeviceSplitCandidate& split) {
this->SetSplit(split.fvalue, split.findex, split.dir, split.left_sum,
split.right_sum);
}
/** Tells whether this node is part of the decision tree */
HOST_DEV_INLINE bool IsUnused() const { return (idx == UNUSED_NODE); }
/** Tells whether this node is a leaf of the decision tree */
HOST_DEV_INLINE bool IsLeaf() const {
return (!IsUnused() && (fidx == UNUSED_NODE));
}
};
template <typename T>
struct SumCallbackOp {
// Running prefix
T running_total;
// Constructor
__device__ SumCallbackOp() : running_total(T()) {}
__device__ T operator()(T block_aggregate) {
T old_prefix = running_total;
running_total += block_aggregate;
return old_prefix;
}
};
template <typename gpair_t>
__device__ inline float device_calc_loss_chg(const GPUTrainingParam& param,
const gpair_t& left,
const gpair_t& parent_sum,
const float& parent_gain) {
gpair_t right = parent_sum - left;
float left_gain = CalcGain(param, left.GetGrad(), left.GetHess());
float right_gain = CalcGain(param, right.GetGrad(), right.GetHess());
return left_gain + right_gain - parent_gain;
}
template <typename gpair_t>
__device__ float inline loss_chg_missing(const gpair_t& scan,
const gpair_t& missing,
const gpair_t& parent_sum,
const float& parent_gain,
const GPUTrainingParam& param,
bool& missing_left_out) { // NOLINT
float missing_left_loss =
device_calc_loss_chg(param, scan + missing, parent_sum, parent_gain);
float missing_right_loss =
device_calc_loss_chg(param, scan, parent_sum, parent_gain);
if (missing_left_loss >= missing_right_loss) {
missing_left_out = true;
return missing_left_loss;
} else {
missing_left_out = false;
return missing_right_loss;
}
}
// Total number of nodes in tree, given depth
__host__ __device__ inline int n_nodes(int depth) {
return (1 << (depth + 1)) - 1;
}
// Number of nodes at this level of the tree
__host__ __device__ inline int n_nodes_level(int depth) { return 1 << depth; }
// Whether a node is currently being processed at current depth
__host__ __device__ inline bool is_active(int nidx, int depth) {
return nidx >= n_nodes(depth - 1);
}
__host__ __device__ inline int parent_nidx(int nidx) { return (nidx - 1) / 2; }
__host__ __device__ inline int left_child_nidx(int nidx) {
return nidx * 2 + 1;
}
__host__ __device__ inline int right_child_nidx(int nidx) {
return nidx * 2 + 2;
}
__host__ __device__ inline bool is_left_child(int nidx) {
return nidx % 2 == 1;
}
// Copy gpu dense representation of tree to xgboost sparse representation
inline void dense2sparse_tree(RegTree* p_tree,
const dh::dvec<DeviceNodeStats>& nodes,
const TrainParam& param) {
RegTree& tree = *p_tree;
std::vector<DeviceNodeStats> h_nodes = nodes.as_vector();
int nid = 0;
for (int gpu_nid = 0; gpu_nid < h_nodes.size(); gpu_nid++) {
const DeviceNodeStats& n = h_nodes[gpu_nid];
if (!n.IsUnused() && !n.IsLeaf()) {
tree.AddChilds(nid);
tree[nid].set_split(n.fidx, n.fvalue, n.dir == LeftDir);
tree.stat(nid).loss_chg = n.root_gain;
tree.stat(nid).base_weight = n.weight;
tree.stat(nid).sum_hess = n.sum_gradients.GetHess();
tree[tree[nid].cleft()].set_leaf(0);
tree[tree[nid].cright()].set_leaf(0);
nid++;
} else if (n.IsLeaf()) {
tree[nid].set_leaf(n.weight * param.learning_rate);
tree.stat(nid).sum_hess = n.sum_gradients.GetHess();
nid++;
}
}
}
/*
* Random
*/
struct BernoulliRng {
float p;
uint32_t seed;
__host__ __device__ BernoulliRng(float p, size_t seed_) : p(p) {
seed = static_cast<uint32_t>(seed_);
}
__host__ __device__ bool operator()(const int i) const {
thrust::default_random_engine rng(seed);
thrust::uniform_real_distribution<float> dist;
rng.discard(i);
return dist(rng) <= p;
}
};
// Set gradient pair to 0 with p = 1 - subsample
inline void subsample_gpair(dh::dvec<bst_gpair>* p_gpair, float subsample,
int offset = 0) {
if (subsample == 1.0) {
return;
}
dh::dvec<bst_gpair>& gpair = *p_gpair;
auto d_gpair = gpair.data();
BernoulliRng rng(subsample, common::GlobalRandom()());
dh::launch_n(gpair.device_idx(), gpair.size(), [=] __device__(int i) {
if (!rng(i + offset)) {
d_gpair[i] = bst_gpair();
}
});
}
inline std::vector<int> col_sample(std::vector<int> features, float colsample) {
CHECK_GT(features.size(), 0);
int n = std::max(1, static_cast<int>(colsample * features.size()));
std::shuffle(features.begin(), features.end(), common::GlobalRandom());
features.resize(n);
std::sort(features.begin(), features.end());
return features;
}
/**
* \class ColumnSampler
*
* \brief Handles selection of columns due to colsample_bytree and
* colsample_bylevel parameters. Should be initialised the before tree
* construction and to reset When tree construction is completed.
*/
class ColumnSampler {
std::vector<int> feature_set_tree;
std::map<int, std::vector<int>> feature_set_level;
TrainParam param;
public:
/**
* \fn void Init(int64_t num_col, const TrainParam& param)
*
* \brief Initialise this object before use.
*
* \param num_col Number of cols.
* \param param The parameter.
*/
void Init(int64_t num_col, const TrainParam& param) {
this->Reset();
this->param = param;
feature_set_tree.resize(num_col);
std::iota(feature_set_tree.begin(), feature_set_tree.end(), 0);
feature_set_tree = col_sample(feature_set_tree, param.colsample_bytree);
}
/**
* \fn void Reset()
*
* \brief Resets this object.
*/
void Reset() {
feature_set_tree.clear();
feature_set_level.clear();
}
/**
* \fn bool ColumnUsed(int column, int depth)
*
* \brief Whether the current column should be considered as a split.
*
* \param column The column index.
* \param depth The current tree depth.
*
* \return True if it should be used, false if it should not be used.
*/
bool ColumnUsed(int column, int depth) {
if (feature_set_level.count(depth) == 0) {
feature_set_level[depth] =
col_sample(feature_set_tree, param.colsample_bylevel);
}
return std::binary_search(feature_set_level[depth].begin(),
feature_set_level[depth].end(), column);
}
};
} // namespace tree
} // namespace xgboost