Rory Mitchell 40c6e2f0c8
Improved gpu_hist_experimental algorithm (#2866)
- Implement colsampling, subsampling for gpu_hist_experimental

 - Optimised multi-GPU implementation for gpu_hist_experimental

 - Make nccl optional

 - Add Volta architecture flag

 - Optimise RegLossObj

 - Add timing utilities for debug verbose mode

 - Bump required cuda version to 8.0
2017-11-11 13:58:40 +13:00
2017-09-28 18:15:28 -05:00
2017-10-26 22:12:54 -05:00
2017-11-06 13:07:10 +01:00
2017-09-17 17:13:11 +12:00
2017-06-25 22:32:11 -04:00
2017-09-08 09:57:16 +12:00
2017-09-28 18:15:28 -05:00
2017-04-25 16:37:10 -07:00

eXtreme Gradient Boosting

Build Status Build Status Documentation Status GitHub license CRAN Status Badge PyPI version Gitter chat for developers at https://gitter.im/dmlc/xgboost

Documentation | Resources | Installation | Release Notes | RoadMap

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

What's New

Ask a Question

Help to Make XGBoost Better

XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone.

License

© Contributors, 2016. Licensed under an Apache-2 license.

Reference

Description
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
Readme 33 MiB
Languages
C++ 45.5%
Python 20.3%
Cuda 15.2%
R 6.8%
Scala 6.4%
Other 5.6%