xgboost/src/metric/auc.cu
Jiaming Yuan 3ef1703553
Allow using string view to find JSON value. (#8332)
- Allow comparison between string and string view.
- Fix compiler warnings.
2022-10-13 17:10:13 +08:00

886 lines
32 KiB
Plaintext

/*!
* Copyright 2021-2022 by XGBoost Contributors
*/
#include <thrust/scan.h>
#include <cub/cub.cuh>
#include <algorithm>
#include <cassert>
#include <limits>
#include <memory>
#include <utility>
#include <tuple>
#include "xgboost/span.h"
#include "xgboost/data.h"
#include "auc.h"
#include "../collective/device_communicator.cuh"
#include "../common/ranking_utils.cuh"
namespace xgboost {
namespace metric {
namespace {
// Pair of FP/TP
using Pair = thrust::pair<double, double>;
template <typename T, typename U, typename P = thrust::pair<T, U>>
struct PairPlus : public thrust::binary_function<P, P, P> {
XGBOOST_DEVICE P operator()(P const& l, P const& r) const {
return thrust::make_pair(l.first + r.first, l.second + r.second);
}
};
} // namespace
/**
* A cache to GPU data to avoid reallocating memory.
*/
struct DeviceAUCCache {
// index sorted by prediction value
dh::device_vector<size_t> sorted_idx;
// track FP/TP for computation on trapezoid area
dh::device_vector<Pair> fptp;
// track FP_PREV/TP_PREV for computation on trapezoid area
dh::device_vector<Pair> neg_pos;
// index of unique prediction values.
dh::device_vector<size_t> unique_idx;
// p^T: transposed prediction matrix, used by MultiClassAUC
dh::device_vector<float> predts_t;
void Init(common::Span<float const> predts, bool is_multi) {
if (sorted_idx.size() != predts.size()) {
sorted_idx.resize(predts.size());
fptp.resize(sorted_idx.size());
unique_idx.resize(sorted_idx.size());
neg_pos.resize(sorted_idx.size());
if (is_multi) {
predts_t.resize(sorted_idx.size());
}
}
}
};
template <bool is_multi>
void InitCacheOnce(common::Span<float const> predts, std::shared_ptr<DeviceAUCCache> *p_cache) {
auto& cache = *p_cache;
if (!cache) {
cache.reset(new DeviceAUCCache);
}
cache->Init(predts, is_multi);
}
/**
* The GPU implementation uses same calculation as CPU with a few more steps to distribute
* work across threads:
*
* - Run scan to obtain TP/FP values, which are right coordinates of trapezoid.
* - Find distinct prediction values and get the corresponding FP_PREV/TP_PREV value,
* which are left coordinates of trapezoids.
* - Reduce the scan array into 1 AUC value.
*/
template <typename Fn>
std::tuple<double, double, double>
GPUBinaryAUC(common::Span<float const> predts, MetaInfo const &info,
int32_t device, common::Span<size_t const> d_sorted_idx,
Fn area_fn, std::shared_ptr<DeviceAUCCache> cache) {
auto labels = info.labels.View(device);
auto weights = info.weights_.ConstDeviceSpan();
dh::safe_cuda(cudaSetDevice(device));
CHECK_NE(labels.Size(), 0);
CHECK_EQ(labels.Size(), predts.size());
/**
* Linear scan
*/
auto get_weight = common::OptionalWeights{weights};
auto get_fp_tp = [=]XGBOOST_DEVICE(size_t i) {
size_t idx = d_sorted_idx[i];
float label = labels(idx);
float w = get_weight[d_sorted_idx[i]];
float fp = (1.0 - label) * w;
float tp = label * w;
return thrust::make_pair(fp, tp);
}; // NOLINT
auto d_fptp = dh::ToSpan(cache->fptp);
dh::LaunchN(d_sorted_idx.size(),
[=] XGBOOST_DEVICE(size_t i) { d_fptp[i] = get_fp_tp(i); });
dh::XGBDeviceAllocator<char> alloc;
auto d_unique_idx = dh::ToSpan(cache->unique_idx);
dh::Iota(d_unique_idx);
auto uni_key = dh::MakeTransformIterator<float>(
thrust::make_counting_iterator(0),
[=] XGBOOST_DEVICE(size_t i) { return predts[d_sorted_idx[i]]; });
auto end_unique = thrust::unique_by_key_copy(
thrust::cuda::par(alloc), uni_key, uni_key + d_sorted_idx.size(),
dh::tbegin(d_unique_idx), thrust::make_discard_iterator(),
dh::tbegin(d_unique_idx));
d_unique_idx = d_unique_idx.subspan(0, end_unique.second - dh::tbegin(d_unique_idx));
dh::InclusiveScan(dh::tbegin(d_fptp), dh::tbegin(d_fptp),
PairPlus<double, double>{}, d_fptp.size());
auto d_neg_pos = dh::ToSpan(cache->neg_pos);
// scatter unique negaive/positive values
// shift to right by 1 with initial value being 0
dh::LaunchN(d_unique_idx.size(), [=] XGBOOST_DEVICE(size_t i) {
if (d_unique_idx[i] == 0) { // first unique index is 0
assert(i == 0);
d_neg_pos[0] = {0, 0};
return;
}
d_neg_pos[d_unique_idx[i]] = d_fptp[d_unique_idx[i] - 1];
if (i == d_unique_idx.size() - 1) {
// last one needs to be included, may override above assignment if the last
// prediction value is distinct from previous one.
d_neg_pos.back() = d_fptp[d_unique_idx[i] - 1];
return;
}
});
auto in = dh::MakeTransformIterator<double>(
thrust::make_counting_iterator(0), [=] XGBOOST_DEVICE(size_t i) {
double fp, tp;
double fp_prev, tp_prev;
if (i == 0) {
// handle the last element
thrust::tie(fp, tp) = d_fptp.back();
thrust::tie(fp_prev, tp_prev) = d_neg_pos[d_unique_idx.back()];
} else {
thrust::tie(fp, tp) = d_fptp[d_unique_idx[i] - 1];
thrust::tie(fp_prev, tp_prev) = d_neg_pos[d_unique_idx[i - 1]];
}
return area_fn(fp_prev, fp, tp_prev, tp);
});
Pair last = cache->fptp.back();
double auc = thrust::reduce(thrust::cuda::par(alloc), in, in + d_unique_idx.size());
return std::make_tuple(last.first, last.second, auc);
}
std::tuple<double, double, double>
GPUBinaryROCAUC(common::Span<float const> predts, MetaInfo const &info,
int32_t device, std::shared_ptr<DeviceAUCCache> *p_cache) {
auto &cache = *p_cache;
InitCacheOnce<false>(predts, p_cache);
/**
* Create sorted index for each class
*/
auto d_sorted_idx = dh::ToSpan(cache->sorted_idx);
dh::ArgSort<false>(predts, d_sorted_idx);
// Create lambda to avoid pass function pointer.
return GPUBinaryAUC(
predts, info, device, d_sorted_idx,
[] XGBOOST_DEVICE(double x0, double x1, double y0, double y1) -> double {
return TrapezoidArea(x0, x1, y0, y1);
},
cache);
}
void Transpose(common::Span<float const> in, common::Span<float> out, size_t m,
size_t n) {
CHECK_EQ(in.size(), out.size());
CHECK_EQ(in.size(), m * n);
dh::LaunchN(in.size(), [=] XGBOOST_DEVICE(size_t i) {
size_t col = i / m;
size_t row = i % m;
size_t idx = row * n + col;
out[i] = in[idx];
});
}
double ScaleClasses(common::Span<double> results, common::Span<double> local_area,
common::Span<double> tp, common::Span<double> auc, size_t n_classes) {
dh::XGBDeviceAllocator<char> alloc;
if (collective::IsDistributed()) {
int32_t device = dh::CurrentDevice();
CHECK_EQ(dh::CudaGetPointerDevice(results.data()), device);
auto* communicator = collective::Communicator::GetDevice(device);
communicator->AllReduceSum(results.data(), results.size());
}
auto reduce_in = dh::MakeTransformIterator<Pair>(
thrust::make_counting_iterator(0), [=] XGBOOST_DEVICE(size_t i) {
if (local_area[i] > 0) {
return thrust::make_pair(auc[i] / local_area[i] * tp[i], tp[i]);
}
return thrust::make_pair(std::numeric_limits<double>::quiet_NaN(), 0.0);
});
double tp_sum;
double auc_sum;
thrust::tie(auc_sum, tp_sum) =
thrust::reduce(thrust::cuda::par(alloc), reduce_in, reduce_in + n_classes,
Pair{0.0, 0.0}, PairPlus<double, double>{});
if (tp_sum != 0 && !std::isnan(auc_sum)) {
auc_sum /= tp_sum;
} else {
return std::numeric_limits<double>::quiet_NaN();
}
return auc_sum;
}
/**
* Calculate FP/TP for multi-class and PR-AUC ranking. `segment_id` is a function for
* getting class id or group id given scan index.
*/
template <typename Fn>
void SegmentedFPTP(common::Span<Pair> d_fptp, Fn segment_id) {
using Triple = thrust::tuple<uint32_t, double, double>;
// expand to tuple to include idx
auto fptp_it_in = dh::MakeTransformIterator<Triple>(
thrust::make_counting_iterator(0), [=] XGBOOST_DEVICE(size_t i) {
return thrust::make_tuple(i, d_fptp[i].first, d_fptp[i].second);
});
// shrink down to pair
auto fptp_it_out = thrust::make_transform_output_iterator(
dh::TypedDiscard<Triple>{}, [d_fptp] XGBOOST_DEVICE(Triple const &t) {
d_fptp[thrust::get<0>(t)] =
thrust::make_pair(thrust::get<1>(t), thrust::get<2>(t));
return t;
});
dh::InclusiveScan(
fptp_it_in, fptp_it_out,
[=] XGBOOST_DEVICE(Triple const &l, Triple const &r) {
uint32_t l_gid = segment_id(thrust::get<0>(l));
uint32_t r_gid = segment_id(thrust::get<0>(r));
if (l_gid != r_gid) {
return r;
}
return Triple(thrust::get<0>(r),
thrust::get<1>(l) + thrust::get<1>(r), // fp
thrust::get<2>(l) + thrust::get<2>(r)); // tp
},
d_fptp.size());
}
/**
* Reduce the values of AUC for each group/class.
*/
template <typename Area, typename Seg>
void SegmentedReduceAUC(common::Span<size_t const> d_unique_idx,
common::Span<uint32_t const> d_class_ptr,
common::Span<uint32_t const> d_unique_class_ptr,
std::shared_ptr<DeviceAUCCache> cache,
Area area_fn,
Seg segment_id,
common::Span<double> d_auc) {
auto d_fptp = dh::ToSpan(cache->fptp);
auto d_neg_pos = dh::ToSpan(cache->neg_pos);
dh::XGBDeviceAllocator<char> alloc;
auto key_in = dh::MakeTransformIterator<uint32_t>(
thrust::make_counting_iterator(0), [=] XGBOOST_DEVICE(size_t i) {
size_t class_id = segment_id(d_unique_idx[i]);
return class_id;
});
auto val_in = dh::MakeTransformIterator<double>(
thrust::make_counting_iterator(0), [=] XGBOOST_DEVICE(size_t i) {
size_t class_id = segment_id(d_unique_idx[i]);
double fp, tp, fp_prev, tp_prev;
if (i == d_unique_class_ptr[class_id]) {
// first item is ignored, we use this thread to calculate the last item
thrust::tie(fp, tp) = d_fptp[common::LastOf(class_id, d_class_ptr)];
thrust::tie(fp_prev, tp_prev) =
d_neg_pos[d_unique_idx[common::LastOf(class_id, d_unique_class_ptr)]];
} else {
thrust::tie(fp, tp) = d_fptp[d_unique_idx[i] - 1];
thrust::tie(fp_prev, tp_prev) = d_neg_pos[d_unique_idx[i - 1]];
}
double auc = area_fn(fp_prev, fp, tp_prev, tp, class_id);
return auc;
});
thrust::reduce_by_key(thrust::cuda::par(alloc), key_in,
key_in + d_unique_idx.size(), val_in,
thrust::make_discard_iterator(), dh::tbegin(d_auc));
}
/**
* MultiClass implementation is similar to binary classification, except we need to split
* up each class in all kernels.
*/
template <bool scale, typename Fn>
double GPUMultiClassAUCOVR(MetaInfo const &info, int32_t device, common::Span<uint32_t> d_class_ptr,
size_t n_classes, std::shared_ptr<DeviceAUCCache> cache, Fn area_fn) {
dh::safe_cuda(cudaSetDevice(device));
/**
* Sorted idx
*/
auto d_predts_t = dh::ToSpan(cache->predts_t);
// Index is sorted within class.
auto d_sorted_idx = dh::ToSpan(cache->sorted_idx);
auto labels = info.labels.View(device);
auto weights = info.weights_.ConstDeviceSpan();
size_t n_samples = labels.Shape(0);
if (n_samples == 0) {
dh::TemporaryArray<double> resutls(n_classes * 4, 0.0f);
auto d_results = dh::ToSpan(resutls);
dh::LaunchN(n_classes * 4,
[=] XGBOOST_DEVICE(size_t i) { d_results[i] = 0.0f; });
auto local_area = d_results.subspan(0, n_classes);
auto tp = d_results.subspan(2 * n_classes, n_classes);
auto auc = d_results.subspan(3 * n_classes, n_classes);
return ScaleClasses(d_results, local_area, tp, auc, n_classes);
}
/**
* Linear scan
*/
dh::caching_device_vector<double> d_auc(n_classes, 0);
auto get_weight = common::OptionalWeights{weights};
auto d_fptp = dh::ToSpan(cache->fptp);
auto get_fp_tp = [=]XGBOOST_DEVICE(size_t i) {
size_t idx = d_sorted_idx[i];
size_t class_id = i / n_samples;
// labels is a vector of size n_samples.
float label = labels(idx % n_samples) == class_id;
float w = get_weight[d_sorted_idx[i] % n_samples];
float fp = (1.0 - label) * w;
float tp = label * w;
return thrust::make_pair(fp, tp);
}; // NOLINT
dh::LaunchN(d_sorted_idx.size(),
[=] XGBOOST_DEVICE(size_t i) { d_fptp[i] = get_fp_tp(i); });
/**
* Handle duplicated predictions
*/
dh::XGBDeviceAllocator<char> alloc;
auto d_unique_idx = dh::ToSpan(cache->unique_idx);
dh::Iota(d_unique_idx);
auto uni_key = dh::MakeTransformIterator<thrust::pair<uint32_t, float>>(
thrust::make_counting_iterator(0), [=] XGBOOST_DEVICE(size_t i) {
uint32_t class_id = i / n_samples;
float predt = d_predts_t[d_sorted_idx[i]];
return thrust::make_pair(class_id, predt);
});
// unique values are sparse, so we need a CSR style indptr
dh::TemporaryArray<uint32_t> unique_class_ptr(d_class_ptr.size());
auto d_unique_class_ptr = dh::ToSpan(unique_class_ptr);
auto n_uniques = dh::SegmentedUniqueByKey(
thrust::cuda::par(alloc),
dh::tbegin(d_class_ptr),
dh::tend(d_class_ptr),
uni_key,
uni_key + d_sorted_idx.size(),
dh::tbegin(d_unique_idx),
d_unique_class_ptr.data(),
dh::tbegin(d_unique_idx),
thrust::equal_to<thrust::pair<uint32_t, float>>{});
d_unique_idx = d_unique_idx.subspan(0, n_uniques);
auto get_class_id = [=] XGBOOST_DEVICE(size_t idx) { return idx / n_samples; };
SegmentedFPTP(d_fptp, get_class_id);
// scatter unique FP_PREV/TP_PREV values
auto d_neg_pos = dh::ToSpan(cache->neg_pos);
// When dataset is not empty, each class must have at least 1 (unique) sample
// prediction, so no need to handle special case.
dh::LaunchN(d_unique_idx.size(), [=] XGBOOST_DEVICE(size_t i) {
if (d_unique_idx[i] % n_samples == 0) { // first unique index is 0
assert(d_unique_idx[i] % n_samples == 0);
d_neg_pos[d_unique_idx[i]] = {0, 0}; // class_id * n_samples = i
return;
}
uint32_t class_id = d_unique_idx[i] / n_samples;
d_neg_pos[d_unique_idx[i]] = d_fptp[d_unique_idx[i] - 1];
if (i == common::LastOf(class_id, d_unique_class_ptr)) {
// last one needs to be included.
size_t last = d_unique_idx[common::LastOf(class_id, d_unique_class_ptr)];
d_neg_pos[common::LastOf(class_id, d_class_ptr)] = d_fptp[last - 1];
return;
}
});
/**
* Reduce the result for each class
*/
auto s_d_auc = dh::ToSpan(d_auc);
SegmentedReduceAUC(d_unique_idx, d_class_ptr, d_unique_class_ptr, cache,
area_fn, get_class_id, s_d_auc);
/**
* Scale the classes with number of samples for each class.
*/
dh::TemporaryArray<double> resutls(n_classes * 4);
auto d_results = dh::ToSpan(resutls);
auto local_area = d_results.subspan(0, n_classes);
auto fp = d_results.subspan(n_classes, n_classes);
auto tp = d_results.subspan(2 * n_classes, n_classes);
auto auc = d_results.subspan(3 * n_classes, n_classes);
dh::LaunchN(n_classes, [=] XGBOOST_DEVICE(size_t c) {
auc[c] = s_d_auc[c];
auto last = d_fptp[n_samples * c + (n_samples - 1)];
fp[c] = last.first;
if (scale) {
local_area[c] = last.first * last.second;
tp[c] = last.second;
} else {
local_area[c] = 1.0f;
tp[c] = 1.0f;
}
});
return ScaleClasses(d_results, local_area, tp, auc, n_classes);
}
void MultiClassSortedIdx(common::Span<float const> predts,
common::Span<uint32_t> d_class_ptr,
std::shared_ptr<DeviceAUCCache> cache) {
size_t n_classes = d_class_ptr.size() - 1;
auto d_predts_t = dh::ToSpan(cache->predts_t);
auto n_samples = d_predts_t.size() / n_classes;
if (n_samples == 0) {
return;
}
Transpose(predts, d_predts_t, n_samples, n_classes);
dh::LaunchN(n_classes + 1,
[=] XGBOOST_DEVICE(size_t i) { d_class_ptr[i] = i * n_samples; });
auto d_sorted_idx = dh::ToSpan(cache->sorted_idx);
dh::SegmentedArgSort<false>(d_predts_t, d_class_ptr, d_sorted_idx);
}
double GPUMultiClassROCAUC(common::Span<float const> predts,
MetaInfo const &info, int32_t device,
std::shared_ptr<DeviceAUCCache> *p_cache,
size_t n_classes) {
auto& cache = *p_cache;
InitCacheOnce<true>(predts, p_cache);
/**
* Create sorted index for each class
*/
dh::TemporaryArray<uint32_t> class_ptr(n_classes + 1, 0);
MultiClassSortedIdx(predts, dh::ToSpan(class_ptr), cache);
auto fn = [] XGBOOST_DEVICE(double fp_prev, double fp, double tp_prev,
double tp, size_t /*class_id*/) {
return TrapezoidArea(fp_prev, fp, tp_prev, tp);
};
return GPUMultiClassAUCOVR<true>(info, device, dh::ToSpan(class_ptr), n_classes, cache, fn);
}
namespace {
struct RankScanItem {
size_t idx;
double predt;
double w;
bst_group_t group_id;
};
} // anonymous namespace
std::pair<double, uint32_t>
GPURankingAUC(common::Span<float const> predts, MetaInfo const &info,
int32_t device, std::shared_ptr<DeviceAUCCache> *p_cache) {
auto& cache = *p_cache;
InitCacheOnce<false>(predts, p_cache);
dh::caching_device_vector<bst_group_t> group_ptr(info.group_ptr_);
dh::XGBCachingDeviceAllocator<char> alloc;
auto d_group_ptr = dh::ToSpan(group_ptr);
/**
* Validate the dataset
*/
auto check_it = dh::MakeTransformIterator<size_t>(
thrust::make_counting_iterator(0),
[=] XGBOOST_DEVICE(size_t i) { return d_group_ptr[i + 1] - d_group_ptr[i]; });
size_t n_valid = thrust::count_if(
thrust::cuda::par(alloc), check_it, check_it + group_ptr.size() - 1,
[=] XGBOOST_DEVICE(size_t len) { return len >= 3; });
if (n_valid < info.group_ptr_.size() - 1) {
InvalidGroupAUC();
}
if (n_valid == 0) {
return std::make_pair(0.0, 0);
}
/**
* Sort the labels
*/
auto d_labels = info.labels.View(device);
auto d_sorted_idx = dh::ToSpan(cache->sorted_idx);
dh::SegmentedArgSort<false>(d_labels.Values(), d_group_ptr, d_sorted_idx);
auto d_weights = info.weights_.ConstDeviceSpan();
dh::caching_device_vector<size_t> threads_group_ptr(group_ptr.size(), 0);
auto d_threads_group_ptr = dh::ToSpan(threads_group_ptr);
// Use max to represent triangle
auto n_threads = common::SegmentedTrapezoidThreads(
d_group_ptr, d_threads_group_ptr, std::numeric_limits<size_t>::max());
CHECK_LT(n_threads, std::numeric_limits<int32_t>::max());
// get the coordinate in nested summation
auto get_i_j = [=]XGBOOST_DEVICE(size_t idx, size_t query_group_idx) {
auto data_group_begin = d_group_ptr[query_group_idx];
size_t n_samples = d_group_ptr[query_group_idx + 1] - data_group_begin;
auto thread_group_begin = d_threads_group_ptr[query_group_idx];
auto idx_in_thread_group = idx - thread_group_begin;
size_t i, j;
common::UnravelTrapeziodIdx(idx_in_thread_group, n_samples, &i, &j);
// we use global index among all groups for sorted idx, so i, j should also be global
// index.
i += data_group_begin;
j += data_group_begin;
return thrust::make_pair(i, j);
}; // NOLINT
auto in = dh::MakeTransformIterator<RankScanItem>(
thrust::make_counting_iterator(0), [=] XGBOOST_DEVICE(size_t idx) {
bst_group_t query_group_idx = dh::SegmentId(d_threads_group_ptr, idx);
auto data_group_begin = d_group_ptr[query_group_idx];
size_t n_samples = d_group_ptr[query_group_idx + 1] - data_group_begin;
if (n_samples < 3) {
// at least 3 documents are required.
return RankScanItem{idx, 0, 0, query_group_idx};
}
size_t i, j;
thrust::tie(i, j) = get_i_j(idx, query_group_idx);
float predt = predts[d_sorted_idx[i]] - predts[d_sorted_idx[j]];
float w = common::Sqr(d_weights.empty() ? 1.0f : d_weights[query_group_idx]);
if (predt > 0) {
predt = 1.0;
} else if (predt == 0) {
predt = 0.5;
} else {
predt = 0;
}
predt *= w;
return RankScanItem{idx, predt, w, query_group_idx};
});
dh::TemporaryArray<double> d_auc(group_ptr.size() - 1);
auto s_d_auc = dh::ToSpan(d_auc);
auto out = thrust::make_transform_output_iterator(
dh::TypedDiscard<RankScanItem>{},
[=] XGBOOST_DEVICE(RankScanItem const &item) -> RankScanItem {
auto group_id = item.group_id;
assert(group_id < d_group_ptr.size());
auto data_group_begin = d_group_ptr[group_id];
size_t n_samples = d_group_ptr[group_id + 1] - data_group_begin;
// last item of current group
if (item.idx == common::LastOf(group_id, d_threads_group_ptr)) {
if (item.w > 0) {
s_d_auc[group_id] = item.predt / item.w;
} else {
s_d_auc[group_id] = 0;
}
}
return {}; // discard
});
dh::InclusiveScan(
in, out,
[] XGBOOST_DEVICE(RankScanItem const &l, RankScanItem const &r) {
if (l.group_id != r.group_id) {
return r;
}
return RankScanItem{r.idx, l.predt + r.predt, l.w + r.w, l.group_id};
},
n_threads);
/**
* Scale the AUC with number of items in each group.
*/
double auc = thrust::reduce(thrust::cuda::par(alloc), dh::tbegin(s_d_auc),
dh::tend(s_d_auc), 0.0);
return std::make_pair(auc, n_valid);
}
std::tuple<double, double, double>
GPUBinaryPRAUC(common::Span<float const> predts, MetaInfo const &info,
int32_t device, std::shared_ptr<DeviceAUCCache> *p_cache) {
auto& cache = *p_cache;
InitCacheOnce<false>(predts, p_cache);
/**
* Create sorted index for each class
*/
auto d_sorted_idx = dh::ToSpan(cache->sorted_idx);
dh::ArgSort<false>(predts, d_sorted_idx);
auto labels = info.labels.View(device);
auto d_weights = info.weights_.ConstDeviceSpan();
auto get_weight = common::OptionalWeights{d_weights};
auto it = dh::MakeTransformIterator<Pair>(
thrust::make_counting_iterator(0ul), [=] XGBOOST_DEVICE(size_t i) {
auto w = get_weight[d_sorted_idx[i]];
return thrust::make_pair(labels(d_sorted_idx[i]) * w,
(1.0f - labels(d_sorted_idx[i])) * w);
});
dh::XGBCachingDeviceAllocator<char> alloc;
double total_pos, total_neg;
thrust::tie(total_pos, total_neg) =
thrust::reduce(thrust::cuda::par(alloc), it, it + labels.Size(),
Pair{0.0, 0.0}, PairPlus<double, double>{});
if (total_pos <= 0.0 || total_neg <= 0.0) {
return {0.0f, 0.0f, 0.0f};
}
auto fn = [total_pos] XGBOOST_DEVICE(double fp_prev, double fp, double tp_prev,
double tp) {
return detail::CalcDeltaPRAUC(fp_prev, fp, tp_prev, tp, total_pos);
};
double fp, tp, auc;
std::tie(fp, tp, auc) = GPUBinaryAUC(predts, info, device, d_sorted_idx, fn, cache);
return std::make_tuple(1.0, 1.0, auc);
}
double GPUMultiClassPRAUC(common::Span<float const> predts,
MetaInfo const &info, int32_t device,
std::shared_ptr<DeviceAUCCache> *p_cache,
size_t n_classes) {
auto& cache = *p_cache;
InitCacheOnce<true>(predts, p_cache);
/**
* Create sorted index for each class
*/
dh::TemporaryArray<uint32_t> class_ptr(n_classes + 1, 0);
auto d_class_ptr = dh::ToSpan(class_ptr);
MultiClassSortedIdx(predts, d_class_ptr, cache);
auto d_sorted_idx = dh::ToSpan(cache->sorted_idx);
auto d_weights = info.weights_.ConstDeviceSpan();
/**
* Get total positive/negative
*/
auto labels = info.labels.View(device);
auto n_samples = info.num_row_;
dh::caching_device_vector<Pair> totals(n_classes);
auto key_it =
dh::MakeTransformIterator<size_t>(thrust::make_counting_iterator(0ul),
[n_samples] XGBOOST_DEVICE(size_t i) {
return i / n_samples; // class id
});
auto get_weight = common::OptionalWeights{d_weights};
auto val_it = dh::MakeTransformIterator<thrust::pair<double, double>>(
thrust::make_counting_iterator(0ul), [=] XGBOOST_DEVICE(size_t i) {
auto idx = d_sorted_idx[i] % n_samples;
auto w = get_weight[idx];
auto class_id = i / n_samples;
auto y = labels(idx) == class_id;
return thrust::make_pair(y * w, (1.0f - y) * w);
});
dh::XGBCachingDeviceAllocator<char> alloc;
thrust::reduce_by_key(thrust::cuda::par(alloc), key_it,
key_it + predts.size(), val_it,
thrust::make_discard_iterator(), totals.begin(),
thrust::equal_to<size_t>{}, PairPlus<double, double>{});
/**
* Calculate AUC
*/
auto d_totals = dh::ToSpan(totals);
auto fn = [d_totals] XGBOOST_DEVICE(double fp_prev, double fp, double tp_prev,
double tp, size_t class_id) {
auto total_pos = d_totals[class_id].first;
return detail::CalcDeltaPRAUC(fp_prev, fp, tp_prev, tp,
d_totals[class_id].first);
};
return GPUMultiClassAUCOVR<false>(info, device, d_class_ptr, n_classes, cache, fn);
}
template <typename Fn>
std::pair<double, uint32_t>
GPURankingPRAUCImpl(common::Span<float const> predts, MetaInfo const &info,
common::Span<uint32_t> d_group_ptr, int32_t device,
std::shared_ptr<DeviceAUCCache> cache, Fn area_fn) {
/**
* Sorted idx
*/
auto d_sorted_idx = dh::ToSpan(cache->sorted_idx);
auto labels = info.labels.View(device);
auto weights = info.weights_.ConstDeviceSpan();
uint32_t n_groups = static_cast<uint32_t>(info.group_ptr_.size() - 1);
/**
* Linear scan
*/
size_t n_samples = labels.Shape(0);
dh::caching_device_vector<double> d_auc(n_groups, 0);
auto get_weight = common::OptionalWeights{weights};
auto d_fptp = dh::ToSpan(cache->fptp);
auto get_fp_tp = [=] XGBOOST_DEVICE(size_t i) {
size_t idx = d_sorted_idx[i];
size_t group_id = dh::SegmentId(d_group_ptr, idx);
float label = labels(idx);
float w = get_weight[group_id];
float fp = (1.0 - label) * w;
float tp = label * w;
return thrust::make_pair(fp, tp);
}; // NOLINT
dh::LaunchN(d_sorted_idx.size(),
[=] XGBOOST_DEVICE(size_t i) { d_fptp[i] = get_fp_tp(i); });
/**
* Handle duplicated predictions
*/
dh::XGBDeviceAllocator<char> alloc;
auto d_unique_idx = dh::ToSpan(cache->unique_idx);
dh::Iota(d_unique_idx);
auto uni_key = dh::MakeTransformIterator<thrust::pair<uint32_t, float>>(
thrust::make_counting_iterator(0), [=] XGBOOST_DEVICE(size_t i) {
auto idx = d_sorted_idx[i];
bst_group_t group_id = dh::SegmentId(d_group_ptr, idx);
float predt = predts[idx];
return thrust::make_pair(group_id, predt);
});
// unique values are sparse, so we need a CSR style indptr
dh::TemporaryArray<uint32_t> unique_class_ptr(d_group_ptr.size());
auto d_unique_class_ptr = dh::ToSpan(unique_class_ptr);
auto n_uniques = dh::SegmentedUniqueByKey(
thrust::cuda::par(alloc),
dh::tbegin(d_group_ptr),
dh::tend(d_group_ptr),
uni_key,
uni_key + d_sorted_idx.size(),
dh::tbegin(d_unique_idx),
d_unique_class_ptr.data(),
dh::tbegin(d_unique_idx),
thrust::equal_to<thrust::pair<uint32_t, float>>{});
d_unique_idx = d_unique_idx.subspan(0, n_uniques);
auto get_group_id = [=] XGBOOST_DEVICE(size_t idx) {
return dh::SegmentId(d_group_ptr, idx);
};
SegmentedFPTP(d_fptp, get_group_id);
// scatter unique FP_PREV/TP_PREV values
auto d_neg_pos = dh::ToSpan(cache->neg_pos);
dh::LaunchN(d_unique_idx.size(), [=] XGBOOST_DEVICE(size_t i) {
if (thrust::binary_search(thrust::seq, d_unique_class_ptr.cbegin(),
d_unique_class_ptr.cend(),
i)) { // first unique index is 0
d_neg_pos[d_unique_idx[i]] = {0, 0};
return;
}
auto group_idx = dh::SegmentId(d_group_ptr, d_unique_idx[i]);
d_neg_pos[d_unique_idx[i]] = d_fptp[d_unique_idx[i] - 1];
if (i == common::LastOf(group_idx, d_unique_class_ptr)) {
// last one needs to be included.
size_t last = d_unique_idx[common::LastOf(group_idx, d_unique_class_ptr)];
d_neg_pos[common::LastOf(group_idx, d_group_ptr)] = d_fptp[last - 1];
return;
}
});
/**
* Reduce the result for each group
*/
auto s_d_auc = dh::ToSpan(d_auc);
SegmentedReduceAUC(d_unique_idx, d_group_ptr, d_unique_class_ptr, cache,
area_fn, get_group_id, s_d_auc);
/**
* Scale the groups with number of samples for each group.
*/
double auc;
uint32_t invalid_groups;
{
auto it = dh::MakeTransformIterator<thrust::pair<double, uint32_t>>(
thrust::make_counting_iterator(0ul), [=] XGBOOST_DEVICE(size_t g) {
double fp, tp;
thrust::tie(fp, tp) = d_fptp[common::LastOf(g, d_group_ptr)];
double area = fp * tp;
auto n_documents = d_group_ptr[g + 1] - d_group_ptr[g];
if (area > 0 && n_documents >= 2) {
return thrust::make_pair(s_d_auc[g], static_cast<uint32_t>(0));
}
return thrust::make_pair(0.0, static_cast<uint32_t>(1));
});
thrust::tie(auc, invalid_groups) = thrust::reduce(
thrust::cuda::par(alloc), it, it + n_groups,
thrust::pair<double, uint32_t>(0.0, 0), PairPlus<double, uint32_t>{});
}
return std::make_pair(auc, n_groups - invalid_groups);
}
std::pair<double, uint32_t>
GPURankingPRAUC(common::Span<float const> predts, MetaInfo const &info,
int32_t device, std::shared_ptr<DeviceAUCCache> *p_cache) {
dh::safe_cuda(cudaSetDevice(device));
if (predts.empty()) {
return std::make_pair(0.0, static_cast<uint32_t>(0));
}
auto &cache = *p_cache;
InitCacheOnce<false>(predts, p_cache);
dh::device_vector<bst_group_t> group_ptr(info.group_ptr_.size());
thrust::copy(info.group_ptr_.begin(), info.group_ptr_.end(), group_ptr.begin());
auto d_group_ptr = dh::ToSpan(group_ptr);
CHECK_GE(info.group_ptr_.size(), 1) << "Must have at least 1 query group for LTR.";
size_t n_groups = info.group_ptr_.size() - 1;
/**
* Create sorted index for each group
*/
auto d_sorted_idx = dh::ToSpan(cache->sorted_idx);
dh::SegmentedArgSort<false>(predts, d_group_ptr, d_sorted_idx);
dh::XGBDeviceAllocator<char> alloc;
auto labels = info.labels.View(device);
if (thrust::any_of(thrust::cuda::par(alloc), dh::tbegin(labels.Values()),
dh::tend(labels.Values()), PRAUCLabelInvalid{})) {
InvalidLabels();
}
/**
* Get total positive/negative for each group.
*/
auto d_weights = info.weights_.ConstDeviceSpan();
dh::caching_device_vector<thrust::pair<double, double>> totals(n_groups);
auto key_it = dh::MakeTransformIterator<size_t>(
thrust::make_counting_iterator(0ul),
[=] XGBOOST_DEVICE(size_t i) { return dh::SegmentId(d_group_ptr, i); });
auto val_it = dh::MakeTransformIterator<Pair>(
thrust::make_counting_iterator(0ul), [=] XGBOOST_DEVICE(size_t i) {
float w = 1.0f;
if (!d_weights.empty()) {
// Avoid a binary search if the groups are not weighted.
auto g = dh::SegmentId(d_group_ptr, i);
w = d_weights[g];
}
auto y = labels(i);
return thrust::make_pair(y * w, (1.0 - y) * w);
});
thrust::reduce_by_key(thrust::cuda::par(alloc), key_it,
key_it + predts.size(), val_it,
thrust::make_discard_iterator(), totals.begin(),
thrust::equal_to<size_t>{}, PairPlus<double, double>{});
/**
* Calculate AUC
*/
auto d_totals = dh::ToSpan(totals);
auto fn = [d_totals] XGBOOST_DEVICE(double fp_prev, double fp, double tp_prev,
double tp, size_t group_id) {
auto total_pos = d_totals[group_id].first;
return detail::CalcDeltaPRAUC(fp_prev, fp, tp_prev, tp,
d_totals[group_id].first);
};
return GPURankingPRAUCImpl(predts, info, d_group_ptr, device, cache, fn);
}
} // namespace metric
} // namespace xgboost