19 Commits

Author SHA1 Message Date
Jiaming Yuan
3ef1703553
Allow using string view to find JSON value. (#8332)
- Allow comparison between string and string view.
- Fix compiler warnings.
2022-10-13 17:10:13 +08:00
Rong Ou
668b8a0ea4
[Breaking] Switch from rabit to the collective communicator (#8257)
* Switch from rabit to the collective communicator

* fix size_t specialization

* really fix size_t

* try again

* add include

* more include

* fix lint errors

* remove rabit includes

* fix pylint error

* return dict from communicator context

* fix communicator shutdown

* fix dask test

* reset communicator mocklist

* fix distributed tests

* do not save device communicator

* fix jvm gpu tests

* add python test for federated communicator

* Update gputreeshap submodule

Co-authored-by: Hyunsu Philip Cho <chohyu01@cs.washington.edu>
2022-10-05 14:39:01 -08:00
Jiaming Yuan
142a208a90
Fix compiler warnings. (#8022)
- Remove/fix unused parameters
- Remove deprecated code in rabit.
- Update dmlc-core.
2022-06-22 21:29:10 +08:00
Jiaming Yuan
1a33b50a0d
Fix compiler warnings. (#7974)
- Remove unused parameters. There are still many warnings that are not yet
addressed. Currently, the warnings in dmlc-core dominate the error log.
- Remove `distributed` parameter from metric.
- Fixes some warnings about signed comparison.
2022-06-06 22:56:25 +08:00
Jiaming Yuan
fdf533f2b9
[POC] Experimental support for l1 error. (#7812)
Support adaptive tree, a feature supported by both sklearn and lightgbm.  The tree leaf is recomputed based on residue of labels and predictions after construction.

For l1 error, the optimal value is the median (50 percentile).

This is marked as experimental support for the following reasons:
- The value is not well defined for distributed training, where we might have empty leaves for local workers. Right now I just use the original leaf value for computing the average with other workers, which might cause significant errors.
- Some follow-ups are required, for exact, pruner, and optimization for quantile function. Also, we need to calculate the initial estimation.
2022-04-26 21:41:55 +08:00
Jiaming Yuan
98d6faefd6
Implement slope for Pseduo-Huber. (#7727)
* Add objective and metric.
* Some refactoring for CPU/GPU dispatching using linalg module.
2022-03-14 21:42:38 +08:00
Jiaming Yuan
5b1161bb64
Convert labels into tensor. (#7456)
* Add a new ctor to tensor for `initilizer_list`.
* Change labels from host device vector to tensor.
* Rename the field from `labels_` to `labels` since it's a public member.
2021-12-17 00:58:35 +08:00
Jiaming Yuan
0f7a9b42f1
Use double precision in metric calculation. (#7364) 2021-11-02 12:00:32 +08:00
Jiaming Yuan
d4349426d8
Re-implement PR-AUC. (#7297)
* Support binary/multi-class classification, ranking.
* Add documents.
* Handle missing data.
2021-10-26 13:07:50 +08:00
Jiaming Yuan
a7d0c66457
Remove unused code. (#7293) 2021-10-12 15:04:41 +08:00
Jiaming Yuan
298af6f409
Fix weighted samples in multi-class AUC. (#7300) 2021-10-11 15:12:29 +08:00
Jiaming Yuan
c311a8c1d8
Enable compiling with system cub. (#7232)
- Tested with all CUDA 11.x.
- Workaround cub scan by using discard iterator in AUC.
- Limit the size of Argsort when compiled with CUDA cub.
2021-09-17 14:28:18 +08:00
Robert Maynard
1a75f43304
Allow compilation with nvcc 11.4 (#7131)
* Use type aliases for discard iterators

* update to include host_vector as thrust 1.12 doesn't bring it in as a side-effect

* cub::DispatchRadixSort requires signed offset types
2021-07-27 20:05:33 +08:00
Jiaming Yuan
1c8fdf2218
Remove use of device_idx in dh::LaunchN. (#7063)
It's an unused parameter, removing it can make the CI log more readable.
2021-06-29 11:37:26 +08:00
Jiaming Yuan
44cc9c04ea
Fix multiclass auc with empty dataset. (#6947) 2021-05-12 15:01:14 +08:00
Jiaming Yuan
1b26a2a561
Copy output data for argsort. (#6866)
Fix GPU AUC.
2021-04-16 21:05:01 +08:00
Jiaming Yuan
905fdd3e08
Fix typos in AUC. (#6795) 2021-03-31 16:35:42 +08:00
Jiaming Yuan
138fe8516a
Remove unnecessary calls to iota. (#6797) 2021-03-31 15:27:23 +08:00
Jiaming Yuan
bcc0277338
Re-implement ROC-AUC. (#6747)
* Re-implement ROC-AUC.

* Binary
* MultiClass
* LTR
* Add documents.

This PR resolves a few issues:
  - Define a value when the dataset is invalid, which can happen if there's an
  empty dataset, or when the dataset contains only positive or negative values.
  - Define ROC-AUC for multi-class classification.
  - Define weighted average value for distributed setting.
  - A correct implementation for learning to rank task.  Previous
  implementation is just binary classification with averaging across groups,
  which doesn't measure ordered learning to rank.
2021-03-20 16:52:40 +08:00