Michal Malohlava 33ee7d1615 [BUILD] Dockerfile and Jenkinsfile revisited (#2514)
Includes:
  - Dockerfile changes
    - Dockerfile clean up
    - Fix execution privileges of files used from Dockerfile.
    - New Dockerfile entrypoint to replace with_user script
    - Defined a placeholders for CPU testing (script and Dockerfile)
  - Jenkinsfile
    - Jenkins file milestone defined
    - Single source code checkout and propagation via stash/unstash
    - Bash needs to be explicitly used in launching make build, since we need
access to environment
    - Jenkinsfile build factory for cmake and make style of jobs
    - Archivation of artifacts (*.so, *.whl, *.egg) produced by cmake build

Missing:
  - CPU testing
  - Python3 env build and testing
2017-07-13 17:51:47 +12:00
2017-07-06 20:05:09 -04:00
2017-07-08 09:17:45 -07:00
2017-07-07 12:36:26 +12:00
2017-07-06 18:05:11 +12:00
2017-06-25 22:32:11 -04:00
2017-07-07 12:36:26 +12:00
2017-05-27 08:38:32 -07:00
2017-07-08 09:17:31 -07:00
2017-05-23 21:47:53 -05:00
2017-04-25 16:37:10 -07:00

eXtreme Gradient Boosting

Build Status Build Status Documentation Status GitHub license CRAN Status Badge PyPI version Gitter chat for developers at https://gitter.im/dmlc/xgboost

Documentation | Resources | Installation | Release Notes | RoadMap

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

What's New

Ask a Question

Help to Make XGBoost Better

XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone.

License

© Contributors, 2016. Licensed under an Apache-2 license.

Reference

Description
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
Readme 33 MiB
Languages
C++ 45.5%
Python 20.3%
Cuda 15.2%
R 6.8%
Scala 6.4%
Other 5.6%