Nan Zhu 31d1baba3d [jvm-packages] Tutorial of XGBoost4J-Spark (#3534)
* add back train method but mark as deprecated

* add back train method but mark as deprecated

* fix scalastyle error

* fix scalastyle error

* add new

* update doc

* finish Gang Scheduling

* more

* intro

* Add sections: Prediction, Model persistence and ML pipeline.

* Add XGBoost4j-Spark MLlib pipeline example

* partial finished version

* finish the doc

* adjust code

* fix the doc

* use rst

* Convert XGBoost4J-Spark tutorial to reST

* Bring XGBoost4J up to date

* add note about using hdfs

* remove duplicate file

* fix descriptions

* update doc

* Wrap HDFS/S3 export support as a note

* update

* wrap indexing_mode example in code block
2018-08-03 21:17:50 -07:00
2018-03-21 19:24:29 -04:00
2018-06-07 10:25:58 +12:00
2018-06-18 12:53:52 -07:00
2018-05-09 14:31:59 -07:00
2018-07-10 00:42:15 -07:00
2018-04-19 18:57:13 +12:00
2017-12-01 02:58:13 -08:00
2018-07-08 15:42:09 -07:00
2018-07-04 13:09:32 -07:00

eXtreme Gradient Boosting

Build Status Build Status Documentation Status GitHub license CRAN Status Badge PyPI version

Community | Documentation | Resources | Contributors | Release Notes

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

License

© Contributors, 2016. Licensed under an Apache-2 license.

Contribute to XGBoost

XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone. Checkout the Community Page

Reference

  • Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016
  • XGBoost originates from research project at University of Washington.
Description
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
Readme 33 MiB
Languages
C++ 45.5%
Python 20.3%
Cuda 15.2%
R 6.8%
Scala 6.4%
Other 5.6%