xgboost/tests/python-gpu/test_gpu_updaters.py
Rory Mitchell 359023c0fa
Speed up python test (#5752)
* Speed up tests

* Prevent DeviceQuantileDMatrix initialisation with numpy

* Use joblib.memory

* Use RandomState
2020-06-05 11:39:24 +12:00

107 lines
4.1 KiB
Python

import numpy as np
import sys
import unittest
import pytest
import xgboost as xgb
sys.path.append("tests/python")
import testing as tm
from regression_test_utilities import run_suite, parameter_combinations, \
assert_results_non_increasing
def assert_gpu_results(cpu_results, gpu_results):
for cpu_res, gpu_res in zip(cpu_results, gpu_results):
# Check final eval result roughly equivalent
assert np.allclose(cpu_res["eval"][-1],
gpu_res["eval"][-1], 1e-1, 1e-1)
datasets = ["Boston", "Cancer", "Digits", "Sparse regression",
"Sparse regression with weights", "Small weights regression"]
test_param = parameter_combinations({
'gpu_id': [0],
'max_depth': [2, 8],
'max_leaves': [255, 4],
'max_bin': [4, 256],
'grow_policy': ['lossguide'],
'single_precision_histogram': [True],
'min_child_weight': [0],
'lambda': [0]})
class TestGPU(unittest.TestCase):
def test_gpu_hist(self):
for param in test_param:
param['tree_method'] = 'gpu_hist'
gpu_results = run_suite(param, select_datasets=datasets)
assert_results_non_increasing(gpu_results, 1e-2)
param['tree_method'] = 'hist'
cpu_results = run_suite(param, select_datasets=datasets)
assert_gpu_results(cpu_results, gpu_results)
@pytest.mark.skipif(**tm.no_cupy())
def test_gpu_hist_device_dmatrix(self):
# DeviceDMatrix does not currently accept sparse formats
device_dmatrix_datasets = ["Boston", "Cancer", "Digits"]
for param in test_param:
param['tree_method'] = 'gpu_hist'
gpu_results_device_dmatrix = run_suite(param, select_datasets=device_dmatrix_datasets,
DMatrixT=xgb.DeviceQuantileDMatrix,
dmatrix_params={'max_bin': param['max_bin']})
assert_results_non_increasing(gpu_results_device_dmatrix, 1e-2)
gpu_results = run_suite(param, select_datasets=device_dmatrix_datasets)
assert_gpu_results(gpu_results, gpu_results_device_dmatrix)
# NOTE(rongou): Because the `Boston` dataset is too small, this only tests external memory mode
# with a single page. To test multiple pages, set DMatrix::kPageSize to, say, 1024.
def test_external_memory(self):
for param in reversed(test_param):
param['tree_method'] = 'gpu_hist'
param['gpu_page_size'] = 1024
gpu_results = run_suite(param, select_datasets=["Boston"])
assert_results_non_increasing(gpu_results, 1e-2)
ext_mem_results = run_suite(param, select_datasets=["Boston External Memory"])
assert_results_non_increasing(ext_mem_results, 1e-2)
assert_gpu_results(gpu_results, ext_mem_results)
break
def test_with_empty_dmatrix(self):
# FIXME(trivialfis): This should be done with all updaters
kRows = 0
kCols = 100
X = np.empty((kRows, kCols))
y = np.empty((kRows))
dtrain = xgb.DMatrix(X, y)
bst = xgb.train({'verbosity': 2,
'tree_method': 'gpu_hist',
'gpu_id': 0},
dtrain,
verbose_eval=True,
num_boost_round=6,
evals=[(dtrain, 'Train')])
kRows = 100
X = np.random.randn(kRows, kCols)
dtest = xgb.DMatrix(X)
predictions = bst.predict(dtest)
np.testing.assert_allclose(predictions, 0.5, 1e-6)
@pytest.mark.mgpu
def test_specified_gpu_id_gpu_update(self):
variable_param = {'gpu_id': [1],
'max_depth': [8],
'max_leaves': [255, 4],
'max_bin': [2, 64],
'grow_policy': ['lossguide'],
'tree_method': ['gpu_hist']}
for param in parameter_combinations(variable_param):
gpu_results = run_suite(param, select_datasets=datasets)
assert_results_non_increasing(gpu_results, 1e-2)