Speed up python test (#5752)
* Speed up tests * Prevent DeviceQuantileDMatrix initialisation with numpy * Use joblib.memory * Use RandomState
This commit is contained in:
parent
cfc23c6a6b
commit
359023c0fa
@ -566,10 +566,6 @@ class DeviceQuantileCudaArrayInterfaceHandler(
|
||||
|
||||
__device_quantile_dmatrix_registry.register_handler(
|
||||
'cupy.core.core', 'ndarray', DeviceQuantileCudaArrayInterfaceHandler)
|
||||
__device_quantile_dmatrix_registry.register_handler_opaque(
|
||||
lambda x: hasattr(x, '__array__'), NumpyHandler)
|
||||
__device_quantile_dmatrix_registry.register_handler_opaque(
|
||||
lambda x: hasattr(x, '__cuda_array_interface__'), NumpyHandler)
|
||||
|
||||
|
||||
class DeviceQuantileCudaColumnarHandler(DeviceQuantileDMatrixDataHandler,
|
||||
|
||||
22
tests/python-gpu/test_device_quantile_dmatrix.py
Normal file
22
tests/python-gpu/test_device_quantile_dmatrix.py
Normal file
@ -0,0 +1,22 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import numpy as np
|
||||
import xgboost as xgb
|
||||
import unittest
|
||||
import pytest
|
||||
import sys
|
||||
|
||||
sys.path.append("tests/python")
|
||||
import testing as tm
|
||||
|
||||
|
||||
class TestDeviceQuantileDMatrix(unittest.TestCase):
|
||||
def test_dmatrix_numpy_init(self):
|
||||
data = np.random.randn(5, 5)
|
||||
with pytest.raises(AssertionError, match='is not supported for DeviceQuantileDMatrix'):
|
||||
dm = xgb.DeviceQuantileDMatrix(data, np.ones(5, dtype=np.float64))
|
||||
|
||||
@pytest.mark.skipif(**tm.no_cupy())
|
||||
def test_dmatrix_cupy_init(self):
|
||||
import cupy as cp
|
||||
data = cp.random.randn(5, 5)
|
||||
dm = xgb.DeviceQuantileDMatrix(data, cp.ones(5, dtype=np.float64))
|
||||
@ -3,12 +3,11 @@ import pytest
|
||||
import unittest
|
||||
|
||||
sys.path.append('tests/python/')
|
||||
import test_linear # noqa: E402
|
||||
import testing as tm # noqa: E402
|
||||
import test_linear # noqa: E402
|
||||
import testing as tm # noqa: E402
|
||||
|
||||
|
||||
class TestGPULinear(unittest.TestCase):
|
||||
|
||||
datasets = ["Boston", "Digits", "Cancer", "Sparse regression"]
|
||||
common_param = {
|
||||
'booster': ['gblinear'],
|
||||
@ -16,7 +15,7 @@ class TestGPULinear(unittest.TestCase):
|
||||
'eta': [0.5],
|
||||
'top_k': [10],
|
||||
'tolerance': [1e-5],
|
||||
'alpha': [.005, .1],
|
||||
'alpha': [.1],
|
||||
'lambda': [0.005],
|
||||
'coordinate_selection': ['cyclic', 'random', 'greedy']}
|
||||
|
||||
@ -26,6 +25,6 @@ class TestGPULinear(unittest.TestCase):
|
||||
parameters['gpu_id'] = [0]
|
||||
for param in test_linear.parameter_combinations(parameters):
|
||||
results = test_linear.run_suite(
|
||||
param, 150, self.datasets, scale_features=True)
|
||||
param, 100, self.datasets, scale_features=True)
|
||||
test_linear.assert_regression_result(results, 1e-2)
|
||||
test_linear.assert_classification_result(results)
|
||||
|
||||
@ -47,6 +47,7 @@ class TestGPU(unittest.TestCase):
|
||||
device_dmatrix_datasets = ["Boston", "Cancer", "Digits"]
|
||||
for param in test_param:
|
||||
param['tree_method'] = 'gpu_hist'
|
||||
|
||||
gpu_results_device_dmatrix = run_suite(param, select_datasets=device_dmatrix_datasets,
|
||||
DMatrixT=xgb.DeviceQuantileDMatrix,
|
||||
dmatrix_params={'max_bin': param['max_bin']})
|
||||
|
||||
@ -4,6 +4,8 @@ import numpy as np
|
||||
import os
|
||||
import sys
|
||||
import xgboost as xgb
|
||||
from joblib import Memory
|
||||
memory = Memory('./cachedir', verbose=0)
|
||||
|
||||
try:
|
||||
from sklearn import datasets
|
||||
@ -39,27 +41,35 @@ class Dataset:
|
||||
return self.__str__()
|
||||
|
||||
|
||||
@memory.cache
|
||||
def get_boston():
|
||||
data = datasets.load_boston()
|
||||
return data.data, data.target
|
||||
|
||||
|
||||
@memory.cache
|
||||
def get_digits():
|
||||
data = datasets.load_digits()
|
||||
return data.data, data.target
|
||||
|
||||
|
||||
@memory.cache
|
||||
def get_cancer():
|
||||
data = datasets.load_breast_cancer()
|
||||
return data.data, data.target
|
||||
|
||||
|
||||
@memory.cache
|
||||
def get_sparse():
|
||||
rng = np.random.RandomState(199)
|
||||
n = 5000
|
||||
n = 2000
|
||||
sparsity = 0.75
|
||||
X, y = datasets.make_regression(n, random_state=rng)
|
||||
X = np.array([[0.0 if rng.uniform(0, 1) < sparsity else x for x in x_row] for x_row in X])
|
||||
flag = rng.binomial(1, sparsity, X.shape)
|
||||
for i in range(X.shape[0]):
|
||||
for j in range(X.shape[1]):
|
||||
if flag[i, j]:
|
||||
X[i, j] = 0.0
|
||||
from scipy import sparse
|
||||
X = sparse.csr_matrix(X)
|
||||
return X, y
|
||||
@ -73,14 +83,18 @@ def get_small_weights():
|
||||
return get_weights_regression(1e-6, 1e-5)
|
||||
|
||||
|
||||
@memory.cache
|
||||
def get_weights_regression(min_weight, max_weight):
|
||||
rng = np.random.RandomState(199)
|
||||
n = 10000
|
||||
n = 2000
|
||||
sparsity = 0.25
|
||||
X, y = datasets.make_regression(n, random_state=rng)
|
||||
X = np.array([[np.nan if rng.uniform(0, 1) < sparsity else x
|
||||
for x in x_row] for x_row in X])
|
||||
w = np.array([rng.uniform(min_weight, max_weight) for i in range(n)])
|
||||
flag = rng.binomial(1, sparsity, X.shape)
|
||||
for i in range(X.shape[0]):
|
||||
for j in range(X.shape[1]):
|
||||
if flag[i, j]:
|
||||
X[i, j] = np.nan
|
||||
w = rng.uniform(min_weight, max_weight, n)
|
||||
return X, y, w
|
||||
|
||||
|
||||
@ -101,10 +115,12 @@ def train_dataset(dataset, param_in, num_rounds=10, scale_features=False, DMatri
|
||||
np.savetxt('tmptmp_1234.csv', np.hstack((dataset.y.reshape(len(dataset.y), 1), X)),
|
||||
delimiter=',')
|
||||
dtrain = DMatrixT('tmptmp_1234.csv?format=csv&label_column=0#tmptmp_',
|
||||
weight=dataset.w)
|
||||
weight=dataset.w)
|
||||
elif DMatrixT is xgb.DeviceQuantileDMatrix:
|
||||
import cupy as cp
|
||||
dtrain = DMatrixT(cp.array(X), dataset.y, weight=dataset.w, **dmatrix_params)
|
||||
dtrain = DMatrixT(cp.array(X), cp.array(dataset.y),
|
||||
weight=None if dataset.w is None else cp.array(dataset.w),
|
||||
**dmatrix_params)
|
||||
else:
|
||||
dtrain = DMatrixT(X, dataset.y, weight=dataset.w, **dmatrix_params)
|
||||
|
||||
@ -146,7 +162,8 @@ def parameter_combinations(variable_param):
|
||||
def run_suite(param, num_rounds=10, select_datasets=None, scale_features=False,
|
||||
DMatrixT=xgb.DMatrix, dmatrix_params={}):
|
||||
"""
|
||||
Run the given parameters on a range of datasets. Objective and eval metric will be automatically set
|
||||
Run the given parameters on a range of datasets. Objective and eval metric will be
|
||||
automatically set
|
||||
"""
|
||||
datasets = [
|
||||
Dataset("Boston", get_boston, "reg:squarederror", "rmse"),
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user