We have 2 new custom objective demos covering both regression and classification with accompanying tutorials in documents.
19 lines
1023 B
Markdown
19 lines
1023 B
Markdown
XGBoost Python Feature Walkthrough
|
|
==================================
|
|
* [Basic walkthrough of wrappers](basic_walkthrough.py)
|
|
* [Re-implement RMSLE as customized metric and objective](custom_rmsle.py)
|
|
* [Re-Implement `multi:softmax` objective as customized objective](custom_softmax.py)
|
|
* [Boosting from existing prediction](boost_from_prediction.py)
|
|
* [Predicting using first n trees](predict_first_ntree.py)
|
|
* [Generalized Linear Model](generalized_linear_model.py)
|
|
* [Cross validation](cross_validation.py)
|
|
* [Predicting leaf indices](predict_leaf_indices.py)
|
|
* [Sklearn Wrapper](sklearn_examples.py)
|
|
* [Sklearn Parallel](sklearn_parallel.py)
|
|
* [Sklearn access evals result](sklearn_evals_result.py)
|
|
* [Access evals result](evals_result.py)
|
|
* [External Memory](external_memory.py)
|
|
* [Training continuation](continuation.py)
|
|
* [Feature weights for column sampling](feature_weights.py)
|
|
* [Basic Categorical data support](categorical.py)
|
|
* [Compare builtin categorical data support with one-hot encoding](cat_in_the_dat.py) |