1339 lines
42 KiB
Python

# pylint: disable=too-many-arguments, too-many-branches, too-many-lines
# pylint: disable=too-many-return-statements, import-error
"""Data dispatching for DMatrix."""
import ctypes
import json
import os
import warnings
from typing import Any, Callable, Iterator, List, Optional, Sequence, Tuple, Union, cast
import numpy as np
from ._typing import (
CupyT,
DataType,
FeatureNames,
FeatureTypes,
FloatCompatible,
NumpyDType,
PandasDType,
c_bst_ulong,
)
from .compat import DataFrame, lazy_isinstance
from .core import (
_LIB,
DataIter,
DataSplitMode,
DMatrix,
_check_call,
_cuda_array_interface,
_ProxyDMatrix,
c_str,
from_pystr_to_cstr,
make_jcargs,
)
DispatchedDataBackendReturnType = Tuple[
ctypes.c_void_p, Optional[FeatureNames], Optional[FeatureTypes]
]
CAT_T = "c"
# meta info that can be a matrix instead of vector.
_matrix_meta = {"base_margin", "label"}
def _warn_unused_missing(data: DataType, missing: Optional[FloatCompatible]) -> None:
if (missing is not None) and (not np.isnan(missing)):
warnings.warn(
"`missing` is not used for current input data type:" + str(type(data)),
UserWarning,
)
def _check_data_shape(data: DataType) -> None:
if hasattr(data, "shape") and len(data.shape) != 2:
raise ValueError("Please reshape the input data into 2-dimensional matrix.")
def _is_scipy_csr(data: DataType) -> bool:
try:
import scipy.sparse
except ImportError:
return False
return isinstance(data, scipy.sparse.csr_matrix)
def _array_interface(data: np.ndarray) -> bytes:
assert (
data.dtype.hasobject is False
), "Input data contains `object` dtype. Expecting numeric data."
interface = data.__array_interface__
if "mask" in interface:
interface["mask"] = interface["mask"].__array_interface__
interface_str = bytes(json.dumps(interface), "utf-8")
return interface_str
def transform_scipy_sparse(data: DataType, is_csr: bool) -> DataType:
"""Ensure correct data alignment and data type for scipy sparse inputs. Input should
be either csr or csc matrix.
"""
from scipy.sparse import csc_matrix, csr_matrix
if len(data.indices) != len(data.data):
raise ValueError(f"length mismatch: {len(data.indices)} vs {len(data.data)}")
indptr, _ = _ensure_np_dtype(data.indptr, data.indptr.dtype)
indices, _ = _ensure_np_dtype(data.indices, data.indices.dtype)
values, _ = _ensure_np_dtype(data.data, data.data.dtype)
if (
indptr is not data.indptr
or indices is not data.indices
or values is not data.data
):
if is_csr:
data = csr_matrix((values, indices, indptr), shape=data.shape)
else:
data = csc_matrix((values, indices, indptr), shape=data.shape)
return data
def _from_scipy_csr(
data: DataType,
missing: FloatCompatible,
nthread: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
) -> DispatchedDataBackendReturnType:
"""Initialize data from a CSR matrix."""
handle = ctypes.c_void_p()
data = transform_scipy_sparse(data, True)
_check_call(
_LIB.XGDMatrixCreateFromCSR(
_array_interface(data.indptr),
_array_interface(data.indices),
_array_interface(data.data),
c_bst_ulong(data.shape[1]),
make_jcargs(missing=float(missing), nthread=int(nthread)),
ctypes.byref(handle),
)
)
return handle, feature_names, feature_types
def _is_scipy_csc(data: DataType) -> bool:
try:
import scipy.sparse
except ImportError:
return False
return isinstance(data, scipy.sparse.csc_matrix)
def _from_scipy_csc(
data: DataType,
missing: FloatCompatible,
nthread: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
) -> DispatchedDataBackendReturnType:
"""Initialize data from a CSC matrix."""
handle = ctypes.c_void_p()
transform_scipy_sparse(data, False)
_check_call(
_LIB.XGDMatrixCreateFromCSC(
_array_interface(data.indptr),
_array_interface(data.indices),
_array_interface(data.data),
c_bst_ulong(data.shape[0]),
make_jcargs(missing=float(missing), nthread=int(nthread)),
ctypes.byref(handle),
)
)
return handle, feature_names, feature_types
def _is_scipy_coo(data: DataType) -> bool:
try:
import scipy.sparse
except ImportError:
return False
return isinstance(data, scipy.sparse.coo_matrix)
def _is_numpy_array(data: DataType) -> bool:
return isinstance(data, (np.ndarray, np.matrix))
def _ensure_np_dtype(
data: DataType, dtype: Optional[NumpyDType]
) -> Tuple[np.ndarray, Optional[NumpyDType]]:
if data.dtype.hasobject or data.dtype in [np.float16, np.bool_]:
dtype = np.float32
data = data.astype(dtype, copy=False)
if not data.flags.aligned:
data = np.require(data, requirements="A")
return data, dtype
def _maybe_np_slice(data: DataType, dtype: Optional[NumpyDType]) -> np.ndarray:
"""Handle numpy slice. This can be removed if we use __array_interface__."""
try:
if not data.flags.c_contiguous:
data = np.array(data, copy=True, dtype=dtype)
else:
data = np.array(data, copy=False, dtype=dtype)
except AttributeError:
data = np.array(data, copy=False, dtype=dtype)
data, dtype = _ensure_np_dtype(data, dtype)
return data
def _from_numpy_array(
data: DataType,
missing: FloatCompatible,
nthread: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
) -> DispatchedDataBackendReturnType:
"""Initialize data from a 2-D numpy matrix."""
_check_data_shape(data)
data, _ = _ensure_np_dtype(data, data.dtype)
handle = ctypes.c_void_p()
_check_call(
_LIB.XGDMatrixCreateFromDense(
_array_interface(data),
make_jcargs(missing=float(missing), nthread=int(nthread)),
ctypes.byref(handle),
)
)
return handle, feature_names, feature_types
def _is_pandas_df(data: DataType) -> bool:
try:
import pandas as pd
except ImportError:
return False
return isinstance(data, pd.DataFrame)
def _is_modin_df(data: DataType) -> bool:
try:
import modin.pandas as pd
except ImportError:
return False
return isinstance(data, pd.DataFrame)
_pandas_dtype_mapper = {
"int8": "int",
"int16": "int",
"int32": "int",
"int64": "int",
"uint8": "int",
"uint16": "int",
"uint32": "int",
"uint64": "int",
"float16": "float",
"float32": "float",
"float64": "float",
"bool": "i",
}
# nullable types
pandas_nullable_mapper = {
"Int8": "int",
"Int16": "int",
"Int32": "int",
"Int64": "int",
"UInt8": "i",
"UInt16": "i",
"UInt32": "i",
"UInt64": "i",
"Float32": "float",
"Float64": "float",
"boolean": "i",
}
pandas_pyarrow_mapper = {
"int8[pyarrow]": "i",
"int16[pyarrow]": "i",
"int32[pyarrow]": "i",
"int64[pyarrow]": "i",
"uint8[pyarrow]": "i",
"uint16[pyarrow]": "i",
"uint32[pyarrow]": "i",
"uint64[pyarrow]": "i",
"float[pyarrow]": "float",
"float32[pyarrow]": "float",
"double[pyarrow]": "float",
"float64[pyarrow]": "float",
"bool[pyarrow]": "i",
}
_pandas_dtype_mapper.update(pandas_nullable_mapper)
_pandas_dtype_mapper.update(pandas_pyarrow_mapper)
_ENABLE_CAT_ERR = (
"When categorical type is supplied, The experimental DMatrix parameter"
"`enable_categorical` must be set to `True`."
)
def _invalid_dataframe_dtype(data: DataType) -> None:
# pandas series has `dtypes` but it's just a single object
# cudf series doesn't have `dtypes`.
if hasattr(data, "dtypes") and hasattr(data.dtypes, "__iter__"):
bad_fields = [
f"{data.columns[i]}: {dtype}"
for i, dtype in enumerate(data.dtypes)
if dtype.name not in _pandas_dtype_mapper
]
err = " Invalid columns:" + ", ".join(bad_fields)
else:
err = ""
type_err = "DataFrame.dtypes for data must be int, float, bool or category."
msg = f"""{type_err} {_ENABLE_CAT_ERR} {err}"""
raise ValueError(msg)
def pandas_feature_info(
data: DataFrame,
meta: Optional[str],
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
enable_categorical: bool,
) -> Tuple[Optional[FeatureNames], Optional[FeatureTypes]]:
"""Handle feature info for pandas dataframe."""
import pandas as pd
from pandas.api.types import is_categorical_dtype, is_sparse
# handle feature names
if feature_names is None and meta is None:
if isinstance(data.columns, pd.MultiIndex):
feature_names = [" ".join([str(x) for x in i]) for i in data.columns]
elif isinstance(data.columns, (pd.Index, pd.RangeIndex)):
feature_names = list(map(str, data.columns))
else:
feature_names = data.columns.format()
# handle feature types
if feature_types is None and meta is None:
feature_types = []
for dtype in data.dtypes:
if is_sparse(dtype):
feature_types.append(_pandas_dtype_mapper[dtype.subtype.name])
elif (
is_categorical_dtype(dtype) or is_pa_ext_categorical_dtype(dtype)
) and enable_categorical:
feature_types.append(CAT_T)
else:
feature_types.append(_pandas_dtype_mapper[dtype.name])
return feature_names, feature_types
def is_nullable_dtype(dtype: PandasDType) -> bool:
"""Whether dtype is a pandas nullable type."""
from pandas.api.types import (
is_bool_dtype,
is_categorical_dtype,
is_float_dtype,
is_integer_dtype,
)
is_int = is_integer_dtype(dtype) and dtype.name in pandas_nullable_mapper
# np.bool has alias `bool`, while pd.BooleanDtype has `boolean`.
is_bool = is_bool_dtype(dtype) and dtype.name == "boolean"
is_float = is_float_dtype(dtype) and dtype.name in pandas_nullable_mapper
return is_int or is_bool or is_float or is_categorical_dtype(dtype)
def is_pa_ext_dtype(dtype: Any) -> bool:
"""Return whether dtype is a pyarrow extension type for pandas"""
return hasattr(dtype, "pyarrow_dtype")
def is_pa_ext_categorical_dtype(dtype: Any) -> bool:
"""Check whether dtype is a dictionary type."""
return lazy_isinstance(
getattr(dtype, "pyarrow_dtype", None), "pyarrow.lib", "DictionaryType"
)
def pandas_cat_null(data: DataFrame) -> DataFrame:
"""Handle categorical dtype and nullable extension types from pandas."""
import pandas as pd
from pandas.api.types import is_categorical_dtype
# handle category codes and nullable.
cat_columns = []
nul_columns = []
# avoid an unnecessary conversion if possible
for col, dtype in zip(data.columns, data.dtypes):
if is_categorical_dtype(dtype):
cat_columns.append(col)
elif is_pa_ext_categorical_dtype(dtype):
raise ValueError(
"pyarrow dictionary type is not supported. Use pandas category instead."
)
elif is_nullable_dtype(dtype):
nul_columns.append(col)
if cat_columns or nul_columns:
# Avoid transformation due to: PerformanceWarning: DataFrame is highly
# fragmented
transformed = data.copy(deep=False)
else:
transformed = data
def cat_codes(ser: pd.Series) -> pd.Series:
if is_categorical_dtype(ser.dtype):
return ser.cat.codes
assert is_pa_ext_categorical_dtype(ser.dtype)
# Not yet supported, the index is not ordered for some reason. Alternately:
# `combine_chunks().to_pandas().cat.codes`. The result is the same.
return ser.array.__arrow_array__().combine_chunks().dictionary_encode().indices
if cat_columns:
# DF doesn't have the cat attribute, as a result, we use apply here
transformed[cat_columns] = (
transformed[cat_columns]
.apply(cat_codes)
.astype(np.float32)
.replace(-1.0, np.NaN)
)
if nul_columns:
transformed[nul_columns] = transformed[nul_columns].astype(np.float32)
# TODO(jiamingy): Investigate the possibility of using dataframe protocol or arrow
# IPC format for pandas so that we can apply the data transformation inside XGBoost
# for better memory efficiency.
return transformed
def pandas_ext_num_types(data: DataFrame) -> DataFrame:
"""Experimental suppport for handling pyarrow extension numeric types."""
import pandas as pd
import pyarrow as pa
for col, dtype in zip(data.columns, data.dtypes):
if not is_pa_ext_dtype(dtype):
continue
# No copy, callstack:
# pandas.core.internals.managers.SingleBlockManager.array_values()
# pandas.core.internals.blocks.EABackedBlock.values
d_array: pd.arrays.ArrowExtensionArray = data[col].array
# no copy in __arrow_array__
# ArrowExtensionArray._data is a chunked array
aa: pa.ChunkedArray = d_array.__arrow_array__()
chunk: pa.Array = aa.combine_chunks()
# Alternately, we can use chunk.buffers(), which returns a list of buffers and
# we need to concatenate them ourselves.
arr = chunk.__array__()
data[col] = arr
return data
def _transform_pandas_df(
data: DataFrame,
enable_categorical: bool,
feature_names: Optional[FeatureNames] = None,
feature_types: Optional[FeatureTypes] = None,
meta: Optional[str] = None,
meta_type: Optional[NumpyDType] = None,
) -> Tuple[np.ndarray, Optional[FeatureNames], Optional[FeatureTypes]]:
from pandas.api.types import is_categorical_dtype, is_sparse
pyarrow_extension = False
for dtype in data.dtypes:
if not (
(dtype.name in _pandas_dtype_mapper)
or is_sparse(dtype)
or (is_categorical_dtype(dtype) and enable_categorical)
or is_pa_ext_dtype(dtype)
):
_invalid_dataframe_dtype(data)
if is_pa_ext_dtype(dtype):
pyarrow_extension = True
feature_names, feature_types = pandas_feature_info(
data, meta, feature_names, feature_types, enable_categorical
)
transformed = pandas_cat_null(data)
if pyarrow_extension:
if transformed is data:
transformed = data.copy(deep=False)
transformed = pandas_ext_num_types(transformed)
if meta and len(data.columns) > 1 and meta not in _matrix_meta:
raise ValueError(f"DataFrame for {meta} cannot have multiple columns")
dtype = meta_type if meta_type else np.float32
arr: np.ndarray = transformed.values
if meta_type:
arr = arr.astype(dtype)
return arr, feature_names, feature_types
def _from_pandas_df(
data: DataFrame,
enable_categorical: bool,
missing: FloatCompatible,
nthread: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
) -> DispatchedDataBackendReturnType:
data, feature_names, feature_types = _transform_pandas_df(
data, enable_categorical, feature_names, feature_types
)
return _from_numpy_array(data, missing, nthread, feature_names, feature_types)
def _is_pandas_series(data: DataType) -> bool:
try:
import pandas as pd
except ImportError:
return False
return isinstance(data, pd.Series)
def _meta_from_pandas_series(
data: DataType, name: str, dtype: Optional[NumpyDType], handle: ctypes.c_void_p
) -> None:
"""Help transform pandas series for meta data like labels"""
data = data.values.astype("float")
from pandas.api.types import is_sparse
if is_sparse(data):
data = data.to_dense() # type: ignore
assert len(data.shape) == 1 or data.shape[1] == 0 or data.shape[1] == 1
_meta_from_numpy(data, name, dtype, handle)
def _is_modin_series(data: DataType) -> bool:
try:
import modin.pandas as pd
except ImportError:
return False
return isinstance(data, pd.Series)
def _from_pandas_series(
data: DataType,
missing: FloatCompatible,
nthread: int,
enable_categorical: bool,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
) -> DispatchedDataBackendReturnType:
from pandas.api.types import is_categorical_dtype
if (data.dtype.name not in _pandas_dtype_mapper) and not (
is_categorical_dtype(data.dtype) and enable_categorical
):
_invalid_dataframe_dtype(data)
if enable_categorical and is_categorical_dtype(data.dtype):
data = data.cat.codes
return _from_numpy_array(
data.values.reshape(data.shape[0], 1).astype("float"),
missing,
nthread,
feature_names,
feature_types,
)
def _is_dt_df(data: DataType) -> bool:
return lazy_isinstance(data, "datatable", "Frame") or lazy_isinstance(
data, "datatable", "DataTable"
)
def _transform_dt_df(
data: DataType,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
meta: Optional[str] = None,
meta_type: Optional[NumpyDType] = None,
) -> Tuple[np.ndarray, Optional[FeatureNames], Optional[FeatureTypes]]:
"""Validate feature names and types if data table"""
_dt_type_mapper = {"bool": "bool", "int": "int", "real": "float"}
_dt_type_mapper2 = {"bool": "i", "int": "int", "real": "float"}
if meta and data.shape[1] > 1:
raise ValueError("DataTable for meta info cannot have multiple columns")
if meta:
meta_type = "float" if meta_type is None else meta_type
# below requires new dt version
# extract first column
data = data.to_numpy()[:, 0].astype(meta_type)
return data, None, None
data_types_names = tuple(lt.name for lt in data.ltypes)
bad_fields = [
data.names[i]
for i, type_name in enumerate(data_types_names)
if type_name not in _dt_type_mapper
]
if bad_fields:
msg = """DataFrame.types for data must be int, float or bool.
Did not expect the data types in fields """
raise ValueError(msg + ", ".join(bad_fields))
if feature_names is None and meta is None:
feature_names = data.names
# always return stypes for dt ingestion
if feature_types is not None:
raise ValueError("DataTable has own feature types, cannot pass them in.")
feature_types = np.vectorize(_dt_type_mapper2.get)(data_types_names).tolist()
return data, feature_names, feature_types
def _from_dt_df(
data: DataType,
missing: Optional[FloatCompatible],
nthread: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
enable_categorical: bool,
) -> DispatchedDataBackendReturnType:
if enable_categorical:
raise ValueError("categorical data in datatable is not supported yet.")
data, feature_names, feature_types = _transform_dt_df(
data, feature_names, feature_types, None, None
)
ptrs = (ctypes.c_void_p * data.ncols)()
if hasattr(data, "internal") and hasattr(data.internal, "column"):
# datatable>0.8.0
for icol in range(data.ncols):
col = data.internal.column(icol)
ptr = col.data_pointer
ptrs[icol] = ctypes.c_void_p(ptr)
else:
# datatable<=0.8.0
from datatable.internal import (
frame_column_data_r, # pylint: disable=no-name-in-module
)
for icol in range(data.ncols):
ptrs[icol] = frame_column_data_r(data, icol)
# always return stypes for dt ingestion
feature_type_strings = (ctypes.c_char_p * data.ncols)()
for icol in range(data.ncols):
feature_type_strings[icol] = ctypes.c_char_p(
data.stypes[icol].name.encode("utf-8")
)
_warn_unused_missing(data, missing)
handle = ctypes.c_void_p()
_check_call(
_LIB.XGDMatrixCreateFromDT(
ptrs,
feature_type_strings,
c_bst_ulong(data.shape[0]),
c_bst_ulong(data.shape[1]),
ctypes.byref(handle),
ctypes.c_int(nthread),
)
)
return handle, feature_names, feature_types
def _is_arrow(data: DataType) -> bool:
try:
import pyarrow as pa
from pyarrow import dataset as arrow_dataset
return isinstance(data, (pa.Table, arrow_dataset.Dataset))
except ImportError:
return False
def record_batch_data_iter(data_iter: Iterator) -> Callable:
"""Data iterator used to ingest Arrow columnar record batches. We are not using
class DataIter because it is only intended for building Device DMatrix and external
memory DMatrix.
"""
from pyarrow.cffi import ffi
c_schemas: List[ffi.CData] = []
c_arrays: List[ffi.CData] = []
def _next(data_handle: int) -> int:
from pyarrow.cffi import ffi
try:
batch = next(data_iter)
c_schemas.append(ffi.new("struct ArrowSchema*"))
c_arrays.append(ffi.new("struct ArrowArray*"))
ptr_schema = int(ffi.cast("uintptr_t", c_schemas[-1]))
ptr_array = int(ffi.cast("uintptr_t", c_arrays[-1]))
# pylint: disable=protected-access
batch._export_to_c(ptr_array, ptr_schema)
_check_call(
_LIB.XGImportArrowRecordBatch(
ctypes.c_void_p(data_handle),
ctypes.c_void_p(ptr_array),
ctypes.c_void_p(ptr_schema),
)
)
return 1
except StopIteration:
return 0
return _next
def _from_arrow(
data: DataType,
missing: FloatCompatible,
nthread: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
enable_categorical: bool,
) -> DispatchedDataBackendReturnType:
import pyarrow as pa
if not all(
pa.types.is_integer(t) or pa.types.is_floating(t) for t in data.schema.types
):
raise ValueError(
"Features in dataset can only be integers or floating point number"
)
if enable_categorical:
raise ValueError("categorical data in arrow is not supported yet.")
batches = data.to_batches()
rb_iter = iter(batches)
it = record_batch_data_iter(rb_iter)
next_callback = ctypes.CFUNCTYPE(ctypes.c_int, ctypes.c_void_p)(it)
handle = ctypes.c_void_p()
config = from_pystr_to_cstr(
json.dumps({"missing": missing, "nthread": nthread, "nbatch": len(batches)})
)
_check_call(
_LIB.XGDMatrixCreateFromArrowCallback(
next_callback,
config,
ctypes.byref(handle),
)
)
return handle, feature_names, feature_types
def _is_cudf_df(data: DataType) -> bool:
return lazy_isinstance(data, "cudf.core.dataframe", "DataFrame")
def _cudf_array_interfaces(data: DataType, cat_codes: list) -> bytes:
"""Extract CuDF __cuda_array_interface__. This is special as it returns a new list
of data and a list of array interfaces. The data is list of categorical codes that
caller can safely ignore, but have to keep their reference alive until usage of
array interface is finished.
"""
try:
from cudf.api.types import is_categorical_dtype
except ImportError:
from cudf.utils.dtypes import is_categorical_dtype
interfaces = []
def append(interface: dict) -> None:
if "mask" in interface:
interface["mask"] = interface["mask"].__cuda_array_interface__
interfaces.append(interface)
if _is_cudf_ser(data):
if is_categorical_dtype(data.dtype):
interface = cat_codes[0].__cuda_array_interface__
else:
interface = data.__cuda_array_interface__
append(interface)
else:
for i, col in enumerate(data):
if is_categorical_dtype(data[col].dtype):
codes = cat_codes[i]
interface = codes.__cuda_array_interface__
else:
interface = data[col].__cuda_array_interface__
append(interface)
interfaces_str = from_pystr_to_cstr(json.dumps(interfaces))
return interfaces_str
def _transform_cudf_df(
data: DataType,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
enable_categorical: bool,
) -> Tuple[ctypes.c_void_p, list, Optional[FeatureNames], Optional[FeatureTypes]]:
try:
from cudf.api.types import is_categorical_dtype
except ImportError:
from cudf.utils.dtypes import is_categorical_dtype
if _is_cudf_ser(data):
dtypes = [data.dtype]
else:
dtypes = data.dtypes
if not all(
dtype.name in _pandas_dtype_mapper
or (is_categorical_dtype(dtype) and enable_categorical)
for dtype in dtypes
):
_invalid_dataframe_dtype(data)
# handle feature names
if feature_names is None:
if _is_cudf_ser(data):
feature_names = [data.name]
elif lazy_isinstance(data.columns, "cudf.core.multiindex", "MultiIndex"):
feature_names = [" ".join([str(x) for x in i]) for i in data.columns]
elif (
lazy_isinstance(data.columns, "cudf.core.index", "RangeIndex")
or lazy_isinstance(data.columns, "cudf.core.index", "Int64Index")
# Unique to cuDF, no equivalence in pandas 1.3.3
or lazy_isinstance(data.columns, "cudf.core.index", "Int32Index")
):
feature_names = list(map(str, data.columns))
else:
feature_names = data.columns.format()
# handle feature types
if feature_types is None:
feature_types = []
for dtype in dtypes:
if is_categorical_dtype(dtype) and enable_categorical:
feature_types.append(CAT_T)
else:
feature_types.append(_pandas_dtype_mapper[dtype.name])
# handle categorical data
cat_codes = []
if _is_cudf_ser(data):
# unlike pandas, cuDF uses NA for missing data.
if is_categorical_dtype(data.dtype) and enable_categorical:
codes = data.cat.codes
cat_codes.append(codes)
else:
for col in data:
dtype = data[col].dtype
if is_categorical_dtype(dtype) and enable_categorical:
codes = data[col].cat.codes
cat_codes.append(codes)
elif is_categorical_dtype(dtype):
raise ValueError(_ENABLE_CAT_ERR)
else:
cat_codes.append([])
return data, cat_codes, feature_names, feature_types
def _from_cudf_df(
data: DataType,
missing: FloatCompatible,
nthread: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
enable_categorical: bool,
) -> DispatchedDataBackendReturnType:
data, cat_codes, feature_names, feature_types = _transform_cudf_df(
data, feature_names, feature_types, enable_categorical
)
interfaces_str = _cudf_array_interfaces(data, cat_codes)
handle = ctypes.c_void_p()
config = bytes(json.dumps({"missing": missing, "nthread": nthread}), "utf-8")
_check_call(
_LIB.XGDMatrixCreateFromCudaColumnar(
interfaces_str,
config,
ctypes.byref(handle),
)
)
return handle, feature_names, feature_types
def _is_cudf_ser(data: DataType) -> bool:
return lazy_isinstance(data, "cudf.core.series", "Series")
def _is_cupy_array(data: DataType) -> bool:
return any(
lazy_isinstance(data, n, "ndarray")
for n in ("cupy.core.core", "cupy", "cupy._core.core")
)
def _transform_cupy_array(data: DataType) -> CupyT:
import cupy # pylint: disable=import-error
if not hasattr(data, "__cuda_array_interface__") and hasattr(data, "__array__"):
data = cupy.array(data, copy=False)
if data.dtype.hasobject or data.dtype in [cupy.float16, cupy.bool_]:
data = data.astype(cupy.float32, copy=False)
return data
def _from_cupy_array(
data: DataType,
missing: FloatCompatible,
nthread: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
) -> DispatchedDataBackendReturnType:
"""Initialize DMatrix from cupy ndarray."""
data = _transform_cupy_array(data)
interface_str = _cuda_array_interface(data)
handle = ctypes.c_void_p()
config = bytes(json.dumps({"missing": missing, "nthread": nthread}), "utf-8")
_check_call(
_LIB.XGDMatrixCreateFromCudaArrayInterface(
interface_str, config, ctypes.byref(handle)
)
)
return handle, feature_names, feature_types
def _is_cupy_csr(data: DataType) -> bool:
try:
import cupyx
except ImportError:
return False
return isinstance(data, cupyx.scipy.sparse.csr_matrix)
def _is_cupy_csc(data: DataType) -> bool:
try:
import cupyx
except ImportError:
return False
return isinstance(data, cupyx.scipy.sparse.csc_matrix)
def _is_dlpack(data: DataType) -> bool:
return "PyCapsule" in str(type(data)) and "dltensor" in str(data)
def _transform_dlpack(data: DataType) -> bool:
from cupy import fromDlpack # pylint: disable=E0401
assert "used_dltensor" not in str(data)
data = fromDlpack(data)
return data
def _from_dlpack(
data: DataType,
missing: FloatCompatible,
nthread: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
) -> DispatchedDataBackendReturnType:
data = _transform_dlpack(data)
return _from_cupy_array(data, missing, nthread, feature_names, feature_types)
def _is_uri(data: DataType) -> bool:
return isinstance(data, (str, os.PathLike))
def _from_uri(
data: DataType,
missing: Optional[FloatCompatible],
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
data_split_mode: DataSplitMode = DataSplitMode.ROW,
) -> DispatchedDataBackendReturnType:
_warn_unused_missing(data, missing)
handle = ctypes.c_void_p()
data = os.fspath(os.path.expanduser(data))
args = {
"uri": str(data),
"data_split_mode": int(data_split_mode),
}
config = bytes(json.dumps(args), "utf-8")
_check_call(_LIB.XGDMatrixCreateFromURI(config, ctypes.byref(handle)))
return handle, feature_names, feature_types
def _is_list(data: DataType) -> bool:
return isinstance(data, list)
def _from_list(
data: Sequence,
missing: FloatCompatible,
n_threads: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
) -> DispatchedDataBackendReturnType:
array = np.array(data)
_check_data_shape(data)
return _from_numpy_array(array, missing, n_threads, feature_names, feature_types)
def _is_tuple(data: DataType) -> bool:
return isinstance(data, tuple)
def _from_tuple(
data: Sequence,
missing: FloatCompatible,
n_threads: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
) -> DispatchedDataBackendReturnType:
return _from_list(data, missing, n_threads, feature_names, feature_types)
def _is_iter(data: DataType) -> bool:
return isinstance(data, DataIter)
def _has_array_protocol(data: DataType) -> bool:
return hasattr(data, "__array__")
def _convert_unknown_data(data: DataType) -> DataType:
warnings.warn(
f"Unknown data type: {type(data)}, trying to convert it to csr_matrix",
UserWarning,
)
try:
import scipy.sparse
except ImportError:
return None
try:
data = scipy.sparse.csr_matrix(data)
except Exception: # pylint: disable=broad-except
return None
return data
def dispatch_data_backend(
data: DataType,
missing: FloatCompatible, # Or Optional[Float]
threads: int,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
enable_categorical: bool = False,
data_split_mode: DataSplitMode = DataSplitMode.ROW,
) -> DispatchedDataBackendReturnType:
"""Dispatch data for DMatrix."""
if not _is_cudf_ser(data) and not _is_pandas_series(data):
_check_data_shape(data)
if _is_scipy_csr(data):
return _from_scipy_csr(data, missing, threads, feature_names, feature_types)
if _is_scipy_csc(data):
return _from_scipy_csc(data, missing, threads, feature_names, feature_types)
if _is_scipy_coo(data):
return _from_scipy_csr(
data.tocsr(), missing, threads, feature_names, feature_types
)
if _is_numpy_array(data):
return _from_numpy_array(data, missing, threads, feature_names, feature_types)
if _is_uri(data):
return _from_uri(data, missing, feature_names, feature_types, data_split_mode)
if _is_list(data):
return _from_list(data, missing, threads, feature_names, feature_types)
if _is_tuple(data):
return _from_tuple(data, missing, threads, feature_names, feature_types)
if _is_pandas_series(data):
import pandas as pd
data = pd.DataFrame(data)
if _is_pandas_df(data):
return _from_pandas_df(
data, enable_categorical, missing, threads, feature_names, feature_types
)
if _is_cudf_df(data) or _is_cudf_ser(data):
return _from_cudf_df(
data, missing, threads, feature_names, feature_types, enable_categorical
)
if _is_cupy_array(data):
return _from_cupy_array(data, missing, threads, feature_names, feature_types)
if _is_cupy_csr(data):
raise TypeError("cupyx CSR is not supported yet.")
if _is_cupy_csc(data):
raise TypeError("cupyx CSC is not supported yet.")
if _is_dlpack(data):
return _from_dlpack(data, missing, threads, feature_names, feature_types)
if _is_dt_df(data):
_warn_unused_missing(data, missing)
return _from_dt_df(
data, missing, threads, feature_names, feature_types, enable_categorical
)
if _is_modin_df(data):
return _from_pandas_df(
data, enable_categorical, missing, threads, feature_names, feature_types
)
if _is_modin_series(data):
return _from_pandas_series(
data, missing, threads, enable_categorical, feature_names, feature_types
)
if _is_arrow(data):
return _from_arrow(
data, missing, threads, feature_names, feature_types, enable_categorical
)
if _has_array_protocol(data):
array = np.asarray(data)
return _from_numpy_array(array, missing, threads, feature_names, feature_types)
converted = _convert_unknown_data(data)
if converted is not None:
return _from_scipy_csr(
converted, missing, threads, feature_names, feature_types
)
raise TypeError("Not supported type for data." + str(type(data)))
def _validate_meta_shape(data: DataType, name: str) -> None:
if hasattr(data, "shape"):
msg = f"Invalid shape: {data.shape} for {name}"
if name in _matrix_meta:
if len(data.shape) > 2:
raise ValueError(msg)
return
if len(data.shape) > 2 or (
len(data.shape) == 2 and (data.shape[1] != 0 and data.shape[1] != 1)
):
raise ValueError(f"Invalid shape: {data.shape} for {name}")
def _meta_from_numpy(
data: np.ndarray,
field: str,
dtype: Optional[NumpyDType],
handle: ctypes.c_void_p,
) -> None:
data, dtype = _ensure_np_dtype(data, dtype)
interface = data.__array_interface__
if interface.get("mask", None) is not None:
raise ValueError("Masked array is not supported.")
interface_str = _array_interface(data)
_check_call(_LIB.XGDMatrixSetInfoFromInterface(handle, c_str(field), interface_str))
def _meta_from_list(
data: Sequence, field: str, dtype: Optional[NumpyDType], handle: ctypes.c_void_p
) -> None:
data_np = np.array(data)
_meta_from_numpy(data_np, field, dtype, handle)
def _meta_from_tuple(
data: Sequence, field: str, dtype: Optional[NumpyDType], handle: ctypes.c_void_p
) -> None:
return _meta_from_list(data, field, dtype, handle)
def _meta_from_cudf_df(data: DataType, field: str, handle: ctypes.c_void_p) -> None:
if field not in _matrix_meta:
_meta_from_cudf_series(data.iloc[:, 0], field, handle)
else:
data = data.values
interface = _cuda_array_interface(data)
_check_call(_LIB.XGDMatrixSetInfoFromInterface(handle, c_str(field), interface))
def _meta_from_cudf_series(data: DataType, field: str, handle: ctypes.c_void_p) -> None:
interface = bytes(json.dumps([data.__cuda_array_interface__], indent=2), "utf-8")
_check_call(_LIB.XGDMatrixSetInfoFromInterface(handle, c_str(field), interface))
def _meta_from_cupy_array(data: DataType, field: str, handle: ctypes.c_void_p) -> None:
data = _transform_cupy_array(data)
interface = bytes(json.dumps([data.__cuda_array_interface__], indent=2), "utf-8")
_check_call(_LIB.XGDMatrixSetInfoFromInterface(handle, c_str(field), interface))
def _meta_from_dt(
data: DataType, field: str, dtype: Optional[NumpyDType], handle: ctypes.c_void_p
) -> None:
data, _, _ = _transform_dt_df(data, None, None, field, dtype)
_meta_from_numpy(data, field, dtype, handle)
def dispatch_meta_backend(
matrix: DMatrix, data: DataType, name: str, dtype: Optional[NumpyDType] = None
) -> None:
"""Dispatch for meta info."""
handle = matrix.handle
assert handle is not None
_validate_meta_shape(data, name)
if data is None:
return
if _is_list(data):
_meta_from_list(data, name, dtype, handle)
return
if _is_tuple(data):
_meta_from_tuple(data, name, dtype, handle)
return
if _is_numpy_array(data):
_meta_from_numpy(data, name, dtype, handle)
return
if _is_pandas_df(data):
data, _, _ = _transform_pandas_df(data, False, meta=name, meta_type=dtype)
_meta_from_numpy(data, name, dtype, handle)
return
if _is_pandas_series(data):
_meta_from_pandas_series(data, name, dtype, handle)
return
if _is_dlpack(data):
data = _transform_dlpack(data)
_meta_from_cupy_array(data, name, handle)
return
if _is_cupy_array(data):
_meta_from_cupy_array(data, name, handle)
return
if _is_cudf_ser(data):
_meta_from_cudf_series(data, name, handle)
return
if _is_cudf_df(data):
_meta_from_cudf_df(data, name, handle)
return
if _is_dt_df(data):
_meta_from_dt(data, name, dtype, handle)
return
if _is_modin_df(data):
data, _, _ = _transform_pandas_df(data, False, meta=name, meta_type=dtype)
_meta_from_numpy(data, name, dtype, handle)
return
if _is_modin_series(data):
data = data.values.astype("float")
assert len(data.shape) == 1 or data.shape[1] == 0 or data.shape[1] == 1
_meta_from_numpy(data, name, dtype, handle)
return
if _has_array_protocol(data):
# pyarrow goes here.
array = np.asarray(data)
_meta_from_numpy(array, name, dtype, handle)
return
raise TypeError("Unsupported type for " + name, str(type(data)))
class SingleBatchInternalIter(DataIter): # pylint: disable=R0902
"""An iterator for single batch data to help creating device DMatrix.
Transforming input directly to histogram with normal single batch data API
can not access weight for sketching. So this iterator acts as a staging
area for meta info.
"""
def __init__(self, **kwargs: Any) -> None:
self.kwargs = kwargs
self.it = 0 # pylint: disable=invalid-name
# This does not necessarily increase memory usage as the data transformation
# might use memory.
super().__init__(release_data=False)
def next(self, input_data: Callable) -> int:
if self.it == 1:
return 0
self.it += 1
input_data(**self.kwargs)
return 1
def reset(self) -> None:
self.it = 0
def _proxy_transform(
data: DataType,
feature_names: Optional[FeatureNames],
feature_types: Optional[FeatureTypes],
enable_categorical: bool,
) -> Tuple[
Union[bool, ctypes.c_void_p, np.ndarray],
Optional[list],
Optional[FeatureNames],
Optional[FeatureTypes],
]:
if _is_cudf_df(data) or _is_cudf_ser(data):
return _transform_cudf_df(
data, feature_names, feature_types, enable_categorical
)
if _is_cupy_array(data):
data = _transform_cupy_array(data)
return data, None, feature_names, feature_types
if _is_dlpack(data):
return _transform_dlpack(data), None, feature_names, feature_types
if _is_list(data) or _is_tuple(data):
data = np.array(data)
if _is_numpy_array(data):
data, _ = _ensure_np_dtype(data, data.dtype)
return data, None, feature_names, feature_types
if _is_scipy_csr(data):
data = transform_scipy_sparse(data, True)
return data, None, feature_names, feature_types
if _is_pandas_series(data):
import pandas as pd
data = pd.DataFrame(data)
if _is_pandas_df(data):
arr, feature_names, feature_types = _transform_pandas_df(
data, enable_categorical, feature_names, feature_types
)
arr, _ = _ensure_np_dtype(arr, arr.dtype)
return arr, None, feature_names, feature_types
raise TypeError("Value type is not supported for data iterator:" + str(type(data)))
def dispatch_proxy_set_data(
proxy: _ProxyDMatrix,
data: DataType,
cat_codes: Optional[list],
allow_host: bool,
) -> None:
"""Dispatch for QuantileDMatrix."""
if not _is_cudf_ser(data) and not _is_pandas_series(data):
_check_data_shape(data)
if _is_cudf_df(data):
# pylint: disable=W0212
proxy._set_data_from_cuda_columnar(data, cast(List, cat_codes))
return
if _is_cudf_ser(data):
# pylint: disable=W0212
proxy._set_data_from_cuda_columnar(data, cast(List, cat_codes))
return
if _is_cupy_array(data):
proxy._set_data_from_cuda_interface(data) # pylint: disable=W0212
return
if _is_dlpack(data):
data = _transform_dlpack(data)
proxy._set_data_from_cuda_interface(data) # pylint: disable=W0212
return
err = TypeError("Value type is not supported for data iterator:" + str(type(data)))
if not allow_host:
raise err
if _is_numpy_array(data):
_check_data_shape(data)
proxy._set_data_from_array(data) # pylint: disable=W0212
return
if _is_scipy_csr(data):
proxy._set_data_from_csr(data) # pylint: disable=W0212
return
raise err