* Use array interface for CSC matrix.
Use array interface for CSC matrix and align the interface with CSR and dense.
- Fix nthread issue in the R package DMatrix.
- Unify the behavior of handling `missing` with other inputs.
- Unify the behavior of handling `missing` around R, Python, Java, and Scala DMatrix.
- Expose `num_non_missing` to the JVM interface.
- Deprecate old CSR and CSC constructors.
- Group C API.
- Add C API sphinx doc.
- Consistent use of `OptionalArg` and the parameter name `config`.
- Remove call to deprecated functions in demo.
- Fix some formatting errors.
- Add links to c examples in the document (only visible with doxygen pages)
- Fix arrow.
* Add a new utility for mapping function onto workers.
* Unify the type for feature names.
* Clean up the iterator.
* Fix prediction with DaskDMatrix worker specification.
* Fix base margin with DeviceQuantileDMatrix.
* Support vs 2022 in setup.py.
* Add num target model parameter, which is configured from input labels.
* Change elementwise metric and indexing for weights.
* Add demo.
* Add tests.
This PR changes base_margin into a 3-dim array, with one of them being reserved for multi-target classification. Also, a breaking change is made for binary serialization due to extra dimension along with a fix for saving the feature weights. Lastly, it unifies the prediction initialization between CPU and GPU. After this PR, the meta info setter in Python will be based on array interface.
This is already partially supported but never properly tested. So the only possible way to use it is calling `numpy.ndarray.flatten` with `base_margin` before passing it into XGBoost. This PR adds proper support
for most of the data types along with tests.
* Support more input types for categorical data.
* Shorten the type name from "categorical" to "c".
* Tests for np/cp array and scipy csr/csc/coo.
* Specify the type for feature info.
The role of ProxyDMatrix is going beyond what it was designed. Now it's used by both
QuantileDeviceDMatrix and inplace prediction. After the refactoring of sparse DMatrix it
will also be used for external memory. Renaming the C API to extract it from
QuantileDeviceDMatrix.
* Change C API name.
* Test for all primitive types from array.
* Add native support for CPU 128 float.
* Convert boolean and float16 in Python.
* Fix dask version for now.