2014-08-27 13:15:28 -07:00

95 lines
3.4 KiB
R

require(xgboost)
require(methods)
# helper function to read libsvm format this is very badly written, load in dense, and convert to sparse
# use this only for demo purpose adopted from
# https://github.com/zygmuntz/r-libsvm-format-read-write/blob/master/f_read.libsvm.r
read.libsvm <- function(fname, maxcol) {
content <- readLines(fname)
nline <- length(content)
label <- numeric(nline)
mat <- matrix(0, nline, maxcol + 1)
for (i in 1:nline) {
arr <- as.vector(strsplit(content[i], " ")[[1]])
label[i] <- as.numeric(arr[[1]])
for (j in 2:length(arr)) {
kv <- strsplit(arr[j], ":")[[1]]
# to avoid 0 index
findex <- as.integer(kv[1]) + 1
fvalue <- as.numeric(kv[2])
mat[i, findex] <- fvalue
}
}
mat <- as(mat, "sparseMatrix")
return(list(label = label, data = mat))
}
# Parameter setting
dtrain <- xgb.DMatrix("agaricus.txt.train")
dtest <- xgb.DMatrix("agaricus.txt.test")
param <- list(`bst:max_depth` = 2, `bst:eta` = 1, silent = 1, objective = "binary:logistic")
watchlist <- list(eval = dtest, train = dtrain)
########################### Train from local file
# Training
bst <- xgboost(file = "agaricus.txt.train", params = param, watchlist = watchlist)
# Prediction
pred <- predict(bst, "agaricus.txt.test")
# Performance
labels <- xgb.getinfo(dtest, "label")
err <- as.numeric(sum(as.integer(pred > 0.5) != labels))/length(labels)
print(paste("error=", err))
########################### Train from R object
csc <- read.libsvm("agaricus.txt.train", 126)
y <- csc$label
x <- csc$data
# x as Sparse Matrix
class(x)
# Training
bst <- xgboost(x, y, params = param, watchlist = watchlist)
# Prediction
pred <- predict(bst, "agaricus.txt.test")
# Performance
labels <- xgb.getinfo(dtest, "label")
err <- as.numeric(sum(as.integer(pred > 0.5) != labels))/length(labels)
print(paste("error=", err))
# Training with dense matrix
x <- as.matrix(x)
bst <- xgboost(x, y, params = param, watchlist = watchlist)
########################### Train with customization
# user define objective function, given prediction, return gradient and second order gradient this is
# loglikelihood loss
logregobj <- function(preds, dtrain) {
labels <- xgb.getinfo(dtrain, "label")
preds <- 1/(1 + exp(-preds))
grad <- preds - labels
hess <- preds * (1 - preds)
return(list(grad = grad, hess = hess))
}
# user defined evaluation function, return a list(metric='metric-name', value='metric-value') NOTE: when
# you do customized loss function, the default prediction value is margin this may make buildin
# evalution metric not function properly for example, we are doing logistic loss, the prediction is
# score before logistic transformation the buildin evaluation error assumes input is after logistic
# transformation Take this in mind when you use the customization, and maybe you need write customized
# evaluation function
evalerror <- function(preds, dtrain) {
labels <- xgb.getinfo(dtrain, "label")
err <- as.numeric(sum(labels != (preds > 0)))/length(labels)
return(list(metric = "error", value = err))
}
bst <- xgboost(x, y, params = param, watchlist = watchlist, obj = logregobj, feval = evalerror)
############################ Train with previous result
bst <- xgboost(x, y, params = param, watchlist = watchlist)
pred <- predict(bst, "agaricus.txt.train", outputmargin = TRUE)
bst2 <- xgboost(x, y, params = param, watchlist = watchlist, margin = pred)