require(xgboost) require(methods) # helper function to read libsvm format this is very badly written, load in dense, and convert to sparse # use this only for demo purpose adopted from # https://github.com/zygmuntz/r-libsvm-format-read-write/blob/master/f_read.libsvm.r read.libsvm <- function(fname, maxcol) { content <- readLines(fname) nline <- length(content) label <- numeric(nline) mat <- matrix(0, nline, maxcol + 1) for (i in 1:nline) { arr <- as.vector(strsplit(content[i], " ")[[1]]) label[i] <- as.numeric(arr[[1]]) for (j in 2:length(arr)) { kv <- strsplit(arr[j], ":")[[1]] # to avoid 0 index findex <- as.integer(kv[1]) + 1 fvalue <- as.numeric(kv[2]) mat[i, findex] <- fvalue } } mat <- as(mat, "sparseMatrix") return(list(label = label, data = mat)) } # Parameter setting dtrain <- xgb.DMatrix("agaricus.txt.train") dtest <- xgb.DMatrix("agaricus.txt.test") param <- list(`bst:max_depth` = 2, `bst:eta` = 1, silent = 1, objective = "binary:logistic") watchlist <- list(eval = dtest, train = dtrain) ########################### Train from local file # Training bst <- xgboost(file = "agaricus.txt.train", params = param, watchlist = watchlist) # Prediction pred <- predict(bst, "agaricus.txt.test") # Performance labels <- xgb.getinfo(dtest, "label") err <- as.numeric(sum(as.integer(pred > 0.5) != labels))/length(labels) print(paste("error=", err)) ########################### Train from R object csc <- read.libsvm("agaricus.txt.train", 126) y <- csc$label x <- csc$data # x as Sparse Matrix class(x) # Training bst <- xgboost(x, y, params = param, watchlist = watchlist) # Prediction pred <- predict(bst, "agaricus.txt.test") # Performance labels <- xgb.getinfo(dtest, "label") err <- as.numeric(sum(as.integer(pred > 0.5) != labels))/length(labels) print(paste("error=", err)) # Training with dense matrix x <- as.matrix(x) bst <- xgboost(x, y, params = param, watchlist = watchlist) ########################### Train with customization # user define objective function, given prediction, return gradient and second order gradient this is # loglikelihood loss logregobj <- function(preds, dtrain) { labels <- xgb.getinfo(dtrain, "label") preds <- 1/(1 + exp(-preds)) grad <- preds - labels hess <- preds * (1 - preds) return(list(grad = grad, hess = hess)) } # user defined evaluation function, return a list(metric='metric-name', value='metric-value') NOTE: when # you do customized loss function, the default prediction value is margin this may make buildin # evalution metric not function properly for example, we are doing logistic loss, the prediction is # score before logistic transformation the buildin evaluation error assumes input is after logistic # transformation Take this in mind when you use the customization, and maybe you need write customized # evaluation function evalerror <- function(preds, dtrain) { labels <- xgb.getinfo(dtrain, "label") err <- as.numeric(sum(labels != (preds > 0)))/length(labels) return(list(metric = "error", value = err)) } bst <- xgboost(x, y, params = param, watchlist = watchlist, obj = logregobj, feval = evalerror) ############################ Train with previous result bst <- xgboost(x, y, params = param, watchlist = watchlist) pred <- predict(bst, "agaricus.txt.train", outputmargin = TRUE) bst2 <- xgboost(x, y, params = param, watchlist = watchlist, margin = pred)