xgboost/src/metric/survival_metric.cu
2021-02-25 13:56:16 +08:00

305 lines
9.5 KiB
Plaintext

/*!
* Copyright 2019-2020 by Contributors
* \file survival_metric.cu
* \brief Metrics for survival analysis
* \author Avinash Barnwal, Hyunsu Cho and Toby Hocking
*/
#include <rabit/rabit.h>
#include <dmlc/registry.h>
#include <memory>
#include <vector>
#include "xgboost/json.h"
#include "xgboost/metric.h"
#include "xgboost/host_device_vector.h"
#include "metric_common.h"
#include "../common/math.h"
#include "../common/survival_util.h"
#if defined(XGBOOST_USE_CUDA)
#include <thrust/execution_policy.h> // thrust::cuda::par
#include "../common/device_helpers.cuh"
#endif // XGBOOST_USE_CUDA
using AFTParam = xgboost::common::AFTParam;
using ProbabilityDistributionType = xgboost::common::ProbabilityDistributionType;
template <typename Distribution>
using AFTLoss = xgboost::common::AFTLoss<Distribution>;
namespace xgboost {
namespace metric {
// tag the this file, used by force static link later.
DMLC_REGISTRY_FILE_TAG(survival_metric);
template <typename EvalRow>
class ElementWiseSurvivalMetricsReduction {
public:
ElementWiseSurvivalMetricsReduction() = default;
void Configure(EvalRow policy) {
policy_ = policy;
}
PackedReduceResult CpuReduceMetrics(
const HostDeviceVector<bst_float>& weights,
const HostDeviceVector<bst_float>& labels_lower_bound,
const HostDeviceVector<bst_float>& labels_upper_bound,
const HostDeviceVector<bst_float>& preds) const {
size_t ndata = labels_lower_bound.Size();
CHECK_EQ(ndata, labels_upper_bound.Size());
const auto& h_labels_lower_bound = labels_lower_bound.HostVector();
const auto& h_labels_upper_bound = labels_upper_bound.HostVector();
const auto& h_weights = weights.HostVector();
const auto& h_preds = preds.HostVector();
double residue_sum = 0;
double weights_sum = 0;
dmlc::OMPException exc;
#pragma omp parallel for reduction(+: residue_sum, weights_sum) schedule(static)
for (omp_ulong i = 0; i < ndata; ++i) {
exc.Run([&]() {
const double wt = h_weights.empty() ? 1.0 : static_cast<double>(h_weights[i]);
residue_sum += policy_.EvalRow(
static_cast<double>(h_labels_lower_bound[i]),
static_cast<double>(h_labels_upper_bound[i]),
static_cast<double>(h_preds[i])) * wt;
weights_sum += wt;
});
}
exc.Rethrow();
PackedReduceResult res{residue_sum, weights_sum};
return res;
}
#if defined(XGBOOST_USE_CUDA)
PackedReduceResult DeviceReduceMetrics(
const HostDeviceVector<bst_float>& weights,
const HostDeviceVector<bst_float>& labels_lower_bound,
const HostDeviceVector<bst_float>& labels_upper_bound,
const HostDeviceVector<bst_float>& preds) {
size_t ndata = labels_lower_bound.Size();
CHECK_EQ(ndata, labels_upper_bound.Size());
thrust::counting_iterator<size_t> begin(0);
thrust::counting_iterator<size_t> end = begin + ndata;
auto s_label_lower_bound = labels_lower_bound.DeviceSpan();
auto s_label_upper_bound = labels_upper_bound.DeviceSpan();
auto s_preds = preds.DeviceSpan();
auto s_weights = weights.DeviceSpan();
const bool is_null_weight = (weights.Size() == 0);
auto d_policy = policy_;
dh::XGBCachingDeviceAllocator<char> alloc;
PackedReduceResult result = thrust::transform_reduce(
thrust::cuda::par(alloc),
begin, end,
[=] XGBOOST_DEVICE(size_t idx) {
double weight = is_null_weight ? 1.0 : static_cast<double>(s_weights[idx]);
double residue = d_policy.EvalRow(
static_cast<double>(s_label_lower_bound[idx]),
static_cast<double>(s_label_upper_bound[idx]),
static_cast<double>(s_preds[idx]));
residue *= weight;
return PackedReduceResult{residue, weight};
},
PackedReduceResult(),
thrust::plus<PackedReduceResult>());
return result;
}
#endif // XGBOOST_USE_CUDA
PackedReduceResult Reduce(
int device,
const HostDeviceVector<bst_float>& weights,
const HostDeviceVector<bst_float>& labels_lower_bound,
const HostDeviceVector<bst_float>& labels_upper_bound,
const HostDeviceVector<bst_float>& preds) {
PackedReduceResult result;
if (device < 0) {
result = CpuReduceMetrics(weights, labels_lower_bound, labels_upper_bound, preds);
}
#if defined(XGBOOST_USE_CUDA)
else { // NOLINT
device_ = device;
preds.SetDevice(device_);
labels_lower_bound.SetDevice(device_);
labels_upper_bound.SetDevice(device_);
weights.SetDevice(device_);
dh::safe_cuda(cudaSetDevice(device_));
result = DeviceReduceMetrics(weights, labels_lower_bound, labels_upper_bound, preds);
}
#endif // defined(XGBOOST_USE_CUDA)
return result;
}
private:
EvalRow policy_;
#if defined(XGBOOST_USE_CUDA)
int device_{-1};
#endif // defined(XGBOOST_USE_CUDA)
};
struct EvalIntervalRegressionAccuracy {
void Configure(const Args& args) {}
const char* Name() const {
return "interval-regression-accuracy";
}
XGBOOST_DEVICE double EvalRow(
double label_lower_bound, double label_upper_bound, double log_pred) const {
const double pred = exp(log_pred);
return (pred >= label_lower_bound && pred <= label_upper_bound) ? 1.0 : 0.0;
}
static double GetFinal(double esum, double wsum) {
return wsum == 0 ? esum : esum / wsum;
}
};
/*! \brief Negative log likelihood of Accelerated Failure Time model */
template <typename Distribution>
struct EvalAFTNLogLik {
void Configure(const Args& args) {
param_.UpdateAllowUnknown(args);
}
const char* Name() const {
return "aft-nloglik";
}
XGBOOST_DEVICE double EvalRow(
double label_lower_bound, double label_upper_bound, double pred) const {
return AFTLoss<Distribution>::Loss(
label_lower_bound, label_upper_bound, pred, param_.aft_loss_distribution_scale);
}
static double GetFinal(double esum, double wsum) {
return wsum == 0 ? esum : esum / wsum;
}
private:
AFTParam param_;
};
template<typename Policy>
struct EvalEWiseSurvivalBase : public Metric {
EvalEWiseSurvivalBase() = default;
void Configure(const Args& args) override {
policy_.Configure(args);
for (const auto& e : args) {
if (e.first == "gpu_id") {
device_ = dmlc::ParseSignedInt<int>(e.second.c_str(), nullptr, 10);
}
}
reducer_.Configure(policy_);
}
bst_float Eval(const HostDeviceVector<bst_float>& preds,
const MetaInfo& info,
bool distributed) override {
CHECK_EQ(preds.Size(), info.labels_lower_bound_.Size());
CHECK_EQ(preds.Size(), info.labels_upper_bound_.Size());
auto result = reducer_.Reduce(
device_, info.weights_, info.labels_lower_bound_, info.labels_upper_bound_, preds);
double dat[2] {result.Residue(), result.Weights()};
if (distributed) {
rabit::Allreduce<rabit::op::Sum>(dat, 2);
}
return static_cast<bst_float>(Policy::GetFinal(dat[0], dat[1]));
}
const char* Name() const override {
return policy_.Name();
}
private:
Policy policy_;
ElementWiseSurvivalMetricsReduction<Policy> reducer_;
int device_{-1}; // used only for GPU metric
};
// This class exists because we want to perform dispatch according to the distribution type at
// configuration time, not at prediction time.
struct AFTNLogLikDispatcher : public Metric {
const char* Name() const override {
return "aft-nloglik";
}
bst_float Eval(const HostDeviceVector<bst_float>& preds,
const MetaInfo& info,
bool distributed) override {
CHECK(metric_) << "AFT metric must be configured first, with distribution type and scale";
return metric_->Eval(preds, info, distributed);
}
void Configure(const Args& args) override {
param_.UpdateAllowUnknown(args);
switch (param_.aft_loss_distribution) {
case common::ProbabilityDistributionType::kNormal:
metric_.reset(new EvalEWiseSurvivalBase<EvalAFTNLogLik<common::NormalDistribution>>());
break;
case common::ProbabilityDistributionType::kLogistic:
metric_.reset(new EvalEWiseSurvivalBase<EvalAFTNLogLik<common::LogisticDistribution>>());
break;
case common::ProbabilityDistributionType::kExtreme:
metric_.reset(new EvalEWiseSurvivalBase<EvalAFTNLogLik<common::ExtremeDistribution>>());
break;
default:
LOG(FATAL) << "Unknown probability distribution";
}
Args new_args{args};
// tparam_ doesn't get propagated to the inner metric object because we didn't use
// Metric::Create(). I don't think it's a good idea to pollute the metric registry with
// specialized versions of the AFT metric, so as a work-around, manually pass the GPU ID
// into the inner metric via configuration.
new_args.emplace_back("gpu_id", std::to_string(tparam_->gpu_id));
metric_->Configure(new_args);
}
void SaveConfig(Json* p_out) const override {
auto& out = *p_out;
out["name"] = String(this->Name());
out["aft_loss_param"] = ToJson(param_);
}
void LoadConfig(const Json& in) override {
FromJson(in["aft_loss_param"], &param_);
}
private:
AFTParam param_;
std::unique_ptr<Metric> metric_;
};
XGBOOST_REGISTER_METRIC(AFTNLogLik, "aft-nloglik")
.describe("Negative log likelihood of Accelerated Failure Time model.")
.set_body([](const char* param) {
return new AFTNLogLikDispatcher();
});
XGBOOST_REGISTER_METRIC(IntervalRegressionAccuracy, "interval-regression-accuracy")
.describe("")
.set_body([](const char* param) {
return new EvalEWiseSurvivalBase<EvalIntervalRegressionAccuracy>();
});
} // namespace metric
} // namespace xgboost