apply google-java-style indentation and impose import orders
eXtreme Gradient Boosting
Documentation | Resources | Installation | Release Notes | RoadMap
XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting(also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment(Hadoop, SGE, MPI) and can solve problems beyond billions of examples.
What's New
Ask a Question
- For reporting bugs please use the xgboost/issues page.
- For generic questions for to share your experience using xgboost please use the XGBoost User Group
Help to Make XGBoost Better
XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone.
- Check out call for contributions and Roadmap to see what can be improved, or open an issue if you want something.
- Contribute to the documents and examples to share your experience with other users.
- Add your stories and experience to Awesome XGBoost.
- Please add your name to CONTRIBUTORS.md and after your patch has been merged.
- Please also update NEWS.md on changes and improvements in API and docs.
License
© Contributors, 2015. Licensed under an Apache-2 license.
Description
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
Languages
C++
45.5%
Python
20.3%
Cuda
15.2%
R
6.8%
Scala
6.4%
Other
5.6%