Liam Huang 001d8c4023 correct CalcDCG in rank_metric.cc and rank_obj.cc (#1642)
* correct CalcDCG in rank_metric.cc

DCG use log base-2, however `std::log` returns log base-e.

* correct CalcDCG in rank_obj.cc

DCG use log base-2, however `std::log` returns log base-e.

* use std::log2 instead of std::log

 make it more elegant

* use std::log2 instead of std::log

make it more elegant
2016-10-18 10:23:41 -07:00
2016-09-29 19:29:47 -07:00
2016-02-10 13:11:21 -08:00
2016-01-16 10:24:00 -08:00
2016-10-09 20:37:57 -07:00
2016-08-17 22:50:37 -07:00
2016-06-13 15:41:24 -07:00

eXtreme Gradient Boosting

Build Status Documentation Status GitHub license CRAN Status Badge PyPI version Gitter chat for developers at https://gitter.im/dmlc/xgboost

Documentation | Resources | Installation | Release Notes | RoadMap

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting(also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment(Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

What's New

Ask a Question

Help to Make XGBoost Better

XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone.

License

© Contributors, 2016. Licensed under an Apache-2 license.

Reference

Description
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
Readme 33 MiB
Languages
C++ 45.5%
Python 20.3%
Cuda 15.2%
R 6.8%
Scala 6.4%
Other 5.6%