Jiaming Yuan 5b2f805e74
Doc and demo for customized metric and obj. (#4598)
Co-Authored-By: Theodore Vasiloudis <theodoros.vasiloudis@gmail.com>
2019-06-26 16:13:12 +08:00

16 lines
770 B
Markdown

XGBoost Python Feature Walkthrough
==================================
* [Basic walkthrough of wrappers](basic_walkthrough.py)
* [Customize loss function, and evaluation metric](custom_objective.py)
* [Re-implement RMSLE as customized metric and objective](custom_rmsle.py)
* [Boosting from existing prediction](boost_from_prediction.py)
* [Predicting using first n trees](predict_first_ntree.py)
* [Generalized Linear Model](generalized_linear_model.py)
* [Cross validation](cross_validation.py)
* [Predicting leaf indices](predict_leaf_indices.py)
* [Sklearn Wrapper](sklearn_examples.py)
* [Sklearn Parallel](sklearn_parallel.py)
* [Sklearn access evals result](sklearn_evals_result.py)
* [Access evals result](evals_result.py)
* [External Memory](external_memory.py)