* add back train method but mark as deprecated
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* fix scalastyle error
* fix scalastyle error
* fix scalastyle error
* fix scalastyle error
* documenting tracker
* Make it a separate note
The `save_model()` and `load_model()` method only saves the part of the model
that's common to all language interfaces and do not preserve Python-specific
attributes, such as `feature_names`. More crucially, label encoder is not
preserved either; this is needed for the scikit-learn wrapper, since you may
have string labels.
Fix: Explicitly recommend pickling as the way to save scikit-learn model
objects.
* Multi-GPU support in GPUPredictor.
- GPUPredictor is multi-GPU
- removed DeviceMatrix, as it has been made obsolete by using HostDeviceVector in DMatrix
* Replaced pointers with spans in GPUPredictor.
* Added a multi-GPU predictor test.
* Fix multi-gpu test.
* Fix n_rows < n_gpus.
* Reinitialize shards when GPUSet is changed.
* Tests range of data.
* Remove commented code.
* Remove commented code.
* Enable auto-locking of issues closed long ago
Issues that were closed more than 90 days ago will be locked automatically so
that no additional comments would be allowed. We will use a bot to do
this: https://probot.github.io/apps/lock/
Background: As a maintainer, I often see people leaving comments to old issue
posts that were closed long ago. Those comments are hard to discover and assist
with, since they get buried under list of other active issues.
With the change, users who want to follow up with an old issue would be asked
to file a new issue.
* Exempt `feature-request` from auto locking
* Disable comment to avoid triggering notification
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* fix scalastyle error
* fix scalastyle error
* fix scalastyle error
* fix scalastyle error
* temp
* add method for classifier and regressor
* update tutorial
* address the comments
* update
A privilege escalation vulnerability (CVE-2017-15288) has been
identified in the Scala compilation daemon. See
https://nvd.nist.gov/vuln/detail/CVE-2017-15288
Fix: Upgrade Scala to 2.11.12.
**Symptom** Apple Clang's implementation of `std::shuffle` expects doesn't work
correctly when it is run with the random bit generator for R package:
```cpp
CustomGlobalRandomEngine::result_type
CustomGlobalRandomEngine::operator()() {
return static_cast<result_type>(
std::floor(unif_rand() * CustomGlobalRandomEngine::max()));
}
```
Minimial reproduction of failure (compile using Apple Clang 10.0):
```cpp
std::vector<int> feature_set(100);
std::iota(feature_set.begin(), feature_set.end(), 0);
// initialize with 0, 1, 2, 3, ..., 99
std::shuffle(feature_set.begin(), feature_set.end(), common::GlobalRandom());
// This returns 0, 1, 2, ..., 99, so content didn't get shuffled at all!!!
```
Note that this bug is platform-dependent; it does not appear when GCC or
upstream LLVM Clang is used.
**Diagnosis** Apple Clang's `std::shuffle` expects 32-bit integer
inputs, whereas `CustomGlobalRandomEngine::operator()` produces 64-bit
integers.
**Fix** Have `CustomGlobalRandomEngine::operator()` produce 32-bit integers.
Closes#3523.
* Split building histogram into separated class.
* Extract `InitCompressedRow` definition.
* Basic tests for gpu-hist.
* Document the code more verbosely.
* Removed `HistCutUnit`.
* Removed some duplicated copies in `GPUHistMaker`.
* Implement LCG and use it in tests.
* Added some instructions on using MinGW-built XGBoost with python.
* Changes according to the discussion and some additions
* Fixed wording and removed redundancy.
* Even more fixes
* Fixed links. Removed redundancy.
* Some fixes according to the discussion
* fixes
* Some fixes
* fixes
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* fix scalastyle error
* fix scalastyle error
* fix scalastyle error
* fix scalastyle error
* sparjJobThread
* update
* fix issue when spark job execution thread cannot return before we execute first()
* Implement Transform class.
* Add tests for softmax.
* Use Transform in regression, softmax and hinge objectives, except for Cox.
* Mark old gpu objective functions deprecated.
* static_assert for softmax.
* Split up multi-gpu tests.
* DMatrix refactor 2
* Remove buffered rowset usage where possible
* Transition to c++11 style iterators for row access
* Transition column iterators to C++ 11
* Add multi-GPU unit test environment
* Better assertion message
* Temporarily disable failing test
* Distinguish between multi-GPU and single-GPU CPP tests
* Consolidate Python tests. Use attributes to distinguish multi-GPU Python tests from single-CPU counterparts
* Fix#3730: scikit-learn 0.20 compatibility fix
sklearn.cross_validation has been removed from scikit-learn 0.20,
so replace it with sklearn.model_selection
* Display test names for Python tests for clarity
* add back train method but mark as deprecated
* fix scalastyle error
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* add back train method but mark as deprecated
* fix scalastyle error
* fix scalastyle error
* fix scalastyle error
* instrumentation
* use log console
* better measurement
* fix erros in example
* update histmaker
* add a demo of multi-class classification R version
* add a demo of multi-class classification result
* add intro to the demo readme
* Delete train.md
* Update README.md