I- Add basic estimation for RMM.
- Re-estimate after every sub-batch.
- Some debug logs for memory usage.
- Fix the locking mechanism in the memory allocator logger.
This helps reduce the memory copying needed for dense data. In addition, it helps reduce memory usage even if external memory is not used.
- Decouple the number of symbols needed in the compressor with the number of features when the data is dense.
- Remove the fetch call in the `at_end_` iteration.
- Reduce synchronization and kernel launches by using the `uvector` and ctx.
- Install cmake using pip.
- Fix compile command generation.
- Clean up the tidy script and remove the need to load the yaml file.
- Fix modernized type traits.
- Fix span class. Polymorphism support is dropped
- Support resource view in ellpack.
- Define the CUDA version of MMAP resource.
- Define the CUDA version of malloc resource.
- Refactor cuda runtime API wrappers, and add memory access related wrappers.
- gather windows macros into a single header.
- Avoid the use of size_t in the partitioner.
- Use `Span` instead of `Elem` where `node_id` is not needed.
- Remove the `const_cast`.
- Make sure the constness is not removed in the `Elem` by making it reference only.
size_t is implementation-defined, which causes issue when we want to pass pointer or span.
This PR replaces the original RABIT implementation with a new one, which has already been partially merged into XGBoost. The new one features:
- Federated learning for both CPU and GPU.
- NCCL.
- More data types.
- A unified interface for all the underlying implementations.
- Improved timeout handling for both tracker and workers.
- Exhausted tests with metrics (fixed a couple of bugs along the way).
- A reusable tracker for Python and JVM packages.
- Use the array interface internally.
- Deprecate `XGDMatrixSetDenseInfo`.
- Deprecate `XGDMatrixSetUIntInfo`.
- Move the handling of `DataType` into the deprecated C function.
---------
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
- Use std::uint64_t instead of size_t to avoid implementation-defined type.
- Rename to bst_idx_t, to account for other types of indexing.
- Small cleanup to the base header.
* Fix pairwise objective with NDCG metric.
- Allow setting `ndcg_exp_gain` for `rank:pairwise`.
This is useful when using pairwise for objective but ndcg for metric.
- CUDA implementation.
- Extract the broadcasting logic, we will need the context parameter after revamping the collective implementation.
- Some changes to the event loop for fixing a deadlock in CI.
- Move argsort into algorithms.cuh, add support for cuda stream.
* [coll] Pass context to various functions.
In the future, the `Context` object would be required for collective operations, this PR
passes the context object to some required functions to prepare for swapping out the
implementation.
- A `DeviceOrd` struct is implemented to indicate the device. It will eventually replace the `gpu_id` parameter.
- The `predictor` parameter is removed.
- Fallback to `DMatrix` when `inplace_predict` is not available.
- The heuristic for choosing a predictor is only used during training.