* Generate column matrix from gHistIndex.
* Avoid synchronization with the sparse page once the cache is written.
* Cleanups: Remove member variables/functions, change the update routine to look like approx and gpu_hist.
* Remove pruner.
* Extract partitioner from hist.
* Implement categorical data support by passing the gradient index directly into the partitioner.
* Organize/update document.
* Remove code for negative hessian.
- Mention standard install command for R package.
- Remove repeated "get source" step.
- Remove troubleshooting on Windows. It's outdated considering VS 2022 is already out.
* Implement `MaxCategory` in quantile.
* Implement partition-based split for GPU evaluation. Currently, it's based on the existing evaluation function.
* Extract an evaluator from GPU Hist to store the needed states.
* Added some CUDA stream/event utilities.
* Update document with references.
* Fixed a bug in approx evaluator where the number of data points is less than the number of categories.
- Add user configuration.
- Bring back to the logic of using scheduler address from dask. This was removed when we were trying to support GKE, now we bring it back and let xgboost try it if direct guess or host IP from user config failed.
This PR rewrites the approx tree method to use codebase from hist for better performance and code sharing.
The rewrite has many benefits:
- Support for both `max_leaves` and `max_depth`.
- Support for `grow_policy`.
- Support for mono constraint.
- Support for feature weights.
- Support for easier bin configuration (`max_bin`).
- Support for categorical data.
- Faster performance for most of the datasets. (many times faster)
- Support for prediction cache.
- Significantly better performance for external memory.
- Unites the code base between approx and hist.
This PR changes base_margin into a 3-dim array, with one of them being reserved for multi-target classification. Also, a breaking change is made for binary serialization due to extra dimension along with a fix for saving the feature weights. Lastly, it unifies the prediction initialization between CPU and GPU. After this PR, the meta info setter in Python will be based on array interface.
* [CI] Drop CUDA 10.1; Require 11.0
* Change NCCL version
* Use CUDA 10.1 for clang-tidy, for now
* Remove JDK 11 and 12
* Fix NCCL version
* Don't require 11.0 just yet, until clang-tidy is fixed
* Skip MultiClassesSerializationTest.GpuHist
* [R] Fix global feature importance.
* Add implementation for tree index. The parameter is not documented in C API since we
should work on porting the model slicing to R instead of supporting more use of tree
index.
* Fix the difference between "gain" and "total_gain".
* debug.
* Fix prediction.
A new parameter `custom_metric` is added to `train` and `cv` to distinguish the behaviour from the old `feval`. And `feval` is deprecated. The new `custom_metric` receives transformed prediction when the built-in objective is used. This enables XGBoost to use cost functions from other libraries like scikit-learn directly without going through the definition of the link function.
`eval_metric` and `early_stopping_rounds` in sklearn interface are moved from `fit` to `__init__` and is now saved as part of the scikit-learn model. The old ones in `fit` function are now deprecated. The new `eval_metric` in `__init__` has the same new behaviour as `custom_metric`.
Added more detailed documents for the behaviour of custom objective and metric.