Previously, we use `libsvm` as default when format is not specified. However, the dmlc
data parser is not particularly robust against errors, and the most common type of error
is undefined format.
Along with which, we will recommend users to use other data loader instead. We will
continue the maintenance of the parsers as it's currently used for many internal tests
including federated learning.
* Create pyproject.toml
* Implement a custom build backend (see below) in packager directory. Build logic from setup.py has been refactored and migrated into the new backend.
* Tested: pip wheel . (build wheel), python -m build --sdist . (source distribution)
- Fix prediction range.
- Support prediction cache in mt-hist.
- Support model slicing.
- Make the booster a Python iterable by defining `__iter__`.
- Cleanup removed/deprecated parameters.
- A new field in the output model `iteration_indptr` for pointing to the ranges of trees for each iteration.
* Implement multi-target for hist.
- Add new hist tree builder.
- Move data fetchers for tests.
- Dispatch function calls in gbm base on the tree type.
- The new implementation is more strict as only binary labels are accepted. The previous implementation converts values greater than 1 to 1.
- Deterministic GPU. (no atomic add).
- Fix top-k handling.
- Precise definition of MAP. (There are other variants on how to handle top-k).
- Refactor GPU ranking tests.
* Update to C++17
* Turn off unity build
* Update CMake to 3.18
* Use MSVC 2022 + CUDA 11.8
* Re-create stack for worker images
* Allocate more disk space for Windows
* Tempiorarily disable clang-tidy
* RAPIDS now requires Python 3.10+
* Unpin cuda-python
* Use latest NCCL
* Use Ubuntu 20.04 in RMM image
* Mark failing mgpu test as xfail
- Replace jvm regex replacement script with mvn command.
- Replace cmake script for python version with python script.
- Automate rest of the manual steps.
The script can handle dev branch, rc release, and formal release version.
- Use the standard package check (check on the tarball instead of the source tree).
- Run commands in parallel.
- Cleanup dependencies installation.
- Replace makefile.
- Documentation.
- Test using the image from rhub.
- Use rst references instead of doxygen links.
- Replace deprecated functions.
- Add SaveModel; put free step last [skip ci]
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
* Configuration for init estimation.
* Check whether the model needs configuration based on const attribute `ModelFitted`
instead of a mutable state.
* Add parameter `boost_from_average` to tell whether the user has specified base score.
* Add tests.