- Avoid the use of size_t in the partitioner.
- Use `Span` instead of `Elem` where `node_id` is not needed.
- Remove the `const_cast`.
- Make sure the constness is not removed in the `Elem` by making it reference only.
size_t is implementation-defined, which causes issue when we want to pass pointer or span.
This PR replaces the original RABIT implementation with a new one, which has already been partially merged into XGBoost. The new one features:
- Federated learning for both CPU and GPU.
- NCCL.
- More data types.
- A unified interface for all the underlying implementations.
- Improved timeout handling for both tracker and workers.
- Exhausted tests with metrics (fixed a couple of bugs along the way).
- A reusable tracker for Python and JVM packages.
- Use the array interface internally.
- Deprecate `XGDMatrixSetDenseInfo`.
- Deprecate `XGDMatrixSetUIntInfo`.
- Move the handling of `DataType` into the deprecated C function.
---------
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
- Use std::uint64_t instead of size_t to avoid implementation-defined type.
- Rename to bst_idx_t, to account for other types of indexing.
- Small cleanup to the base header.
* Fix pairwise objective with NDCG metric.
- Allow setting `ndcg_exp_gain` for `rank:pairwise`.
This is useful when using pairwise for objective but ndcg for metric.
- CUDA implementation.
- Extract the broadcasting logic, we will need the context parameter after revamping the collective implementation.
- Some changes to the event loop for fixing a deadlock in CI.
- Move argsort into algorithms.cuh, add support for cuda stream.
* [coll] Pass context to various functions.
In the future, the `Context` object would be required for collective operations, this PR
passes the context object to some required functions to prepare for swapping out the
implementation.
- A `DeviceOrd` struct is implemented to indicate the device. It will eventually replace the `gpu_id` parameter.
- The `predictor` parameter is removed.
- Fallback to `DMatrix` when `inplace_predict` is not available.
- The heuristic for choosing a predictor is only used during training.
* Use ptr from mmap for `GHistIndexMatrix` and `ColumnMatrix`.
- Define a resource for holding various types of memory pointers.
- Define ref vector for holding resources.
- Swap the underlying resources for GHist and ColumnM.
- Add documentation for current status.
- s390x support is removed. It should work if you can compile XGBoost, all the old workaround code does is to get GCC to compile.
- Update SparseDMatrix comment.
- Use a pointer in the bitfield. We will replace the `std::vector<bool>` in `ColumnMatrix` with bitfield.
- Clean up the page source. The timer is removed as it's inaccurate once we swap the mmap pointer into the page.
- Implement a simple `IterSpan` for passing iterators with size.
- Use shared memory for column size counts.
- Use one thread for each sample in row count to reduce atomic operations.
- Pass context from booster to DMatrix.
- Use context instead of integer for `n_threads`.
- Check the consistency configuration for `max_bin`.
- Test for all combinations of initialization options.
Previously, we use `libsvm` as default when format is not specified. However, the dmlc
data parser is not particularly robust against errors, and the most common type of error
is undefined format.
Along with which, we will recommend users to use other data loader instead. We will
continue the maintenance of the parsers as it's currently used for many internal tests
including federated learning.
- Fix prediction range.
- Support prediction cache in mt-hist.
- Support model slicing.
- Make the booster a Python iterable by defining `__iter__`.
- Cleanup removed/deprecated parameters.
- A new field in the output model `iteration_indptr` for pointing to the ranges of trees for each iteration.
- The new implementation is more strict as only binary labels are accepted. The previous implementation converts values greater than 1 to 1.
- Deterministic GPU. (no atomic add).
- Fix top-k handling.
- Precise definition of MAP. (There are other variants on how to handle top-k).
- Refactor GPU ranking tests.