Federated learning plugin for xgboost:
* A gRPC server to aggregate MPI-style requests (allgather, allreduce, broadcast) from federated workers.
* A Rabit engine for the federated environment.
* Integration test to simulate federated learning.
Additional followups are needed to address GPU support, better security, and privacy, etc.
* Extract partitioner from hist.
* Implement categorical data support by passing the gradient index directly into the partitioner.
* Organize/update document.
* Remove code for negative hessian.
* Fix copy for cv. This prevents inserting default callbacks into the input list.
* Clarify the behavior of callbacks in training/cv.
* Fix typos in doc.
* Cleanup some pylint errors.
* Cleanup pylint errors in rabit modules.
* Make data iter an abstract class and cleanup private access.
* Cleanup no-self-use for booster.
* Implement `MaxCategory` in quantile.
* Implement partition-based split for GPU evaluation. Currently, it's based on the existing evaluation function.
* Extract an evaluator from GPU Hist to store the needed states.
* Added some CUDA stream/event utilities.
* Update document with references.
* Fixed a bug in approx evaluator where the number of data points is less than the number of categories.
Empty partition is different from empty dataset. For the former case, each worker has
non-empty dask collections, but each collection might contain empty partition.
* Add a new utility for mapping function onto workers.
* Unify the type for feature names.
* Clean up the iterator.
* Fix prediction with DaskDMatrix worker specification.
* Fix base margin with DeviceQuantileDMatrix.
* Support vs 2022 in setup.py.
- Add user configuration.
- Bring back to the logic of using scheduler address from dask. This was removed when we were trying to support GKE, now we bring it back and let xgboost try it if direct guess or host IP from user config failed.
This PR rewrites the approx tree method to use codebase from hist for better performance and code sharing.
The rewrite has many benefits:
- Support for both `max_leaves` and `max_depth`.
- Support for `grow_policy`.
- Support for mono constraint.
- Support for feature weights.
- Support for easier bin configuration (`max_bin`).
- Support for categorical data.
- Faster performance for most of the datasets. (many times faster)
- Support for prediction cache.
- Significantly better performance for external memory.
- Unites the code base between approx and hist.
* Add num target model parameter, which is configured from input labels.
* Change elementwise metric and indexing for weights.
* Add demo.
* Add tests.