Add missing train parameter for sklearn interface. (#7629)
Some other parameters are still missing and rely on **kwargs, for instance parameters from dart.
This commit is contained in:
parent
3e693e4f97
commit
926af9951e
@ -112,6 +112,13 @@ __estimator_doc = '''
|
||||
__model_doc = f'''
|
||||
max_depth : Optional[int]
|
||||
Maximum tree depth for base learners.
|
||||
max_leaves :
|
||||
Maximum number of leaves; 0 indicates no limit.
|
||||
max_bin :
|
||||
If using histogram-based algorithm, maximum number of bins per feature
|
||||
grow_policy :
|
||||
Tree growing policy. 0: favor splitting at nodes closest to the node, i.e. grow
|
||||
depth-wise. 1: favor splitting at nodes with highest loss change.
|
||||
learning_rate : Optional[float]
|
||||
Boosting learning rate (xgb's "eta")
|
||||
verbosity : Optional[int]
|
||||
@ -132,14 +139,19 @@ __model_doc = f'''
|
||||
balance the threads. Creating thread contention will significantly slow down both
|
||||
algorithms.
|
||||
gamma : Optional[float]
|
||||
Minimum loss reduction required to make a further partition on a leaf
|
||||
node of the tree.
|
||||
(min_split_loss) Minimum loss reduction required to make a further partition on a
|
||||
leaf node of the tree.
|
||||
min_child_weight : Optional[float]
|
||||
Minimum sum of instance weight(hessian) needed in a child.
|
||||
max_delta_step : Optional[float]
|
||||
Maximum delta step we allow each tree's weight estimation to be.
|
||||
subsample : Optional[float]
|
||||
Subsample ratio of the training instance.
|
||||
sampling_method :
|
||||
Sampling method. Used only by `gpu_hist` tree method.
|
||||
- `uniform`: select random training instances uniformly.
|
||||
- `gradient_based` select random training instances with higher probability when
|
||||
the gradient and hessian are larger. (cf. CatBoost)
|
||||
colsample_bytree : Optional[float]
|
||||
Subsample ratio of columns when constructing each tree.
|
||||
colsample_bylevel : Optional[float]
|
||||
@ -464,6 +476,9 @@ class XGBModel(XGBModelBase):
|
||||
def __init__(
|
||||
self,
|
||||
max_depth: Optional[int] = None,
|
||||
max_leaves: Optional[int] = None,
|
||||
max_bin: Optional[int] = None,
|
||||
grow_policy: Optional[str] = None,
|
||||
learning_rate: Optional[float] = None,
|
||||
n_estimators: int = 100,
|
||||
verbosity: Optional[int] = None,
|
||||
@ -475,6 +490,7 @@ class XGBModel(XGBModelBase):
|
||||
min_child_weight: Optional[float] = None,
|
||||
max_delta_step: Optional[float] = None,
|
||||
subsample: Optional[float] = None,
|
||||
sampling_method: Optional[str] = None,
|
||||
colsample_bytree: Optional[float] = None,
|
||||
colsample_bylevel: Optional[float] = None,
|
||||
colsample_bynode: Optional[float] = None,
|
||||
@ -506,6 +522,9 @@ class XGBModel(XGBModelBase):
|
||||
self.objective = objective
|
||||
|
||||
self.max_depth = max_depth
|
||||
self.max_leaves = max_leaves
|
||||
self.max_bin = max_bin
|
||||
self.grow_policy = grow_policy
|
||||
self.learning_rate = learning_rate
|
||||
self.verbosity = verbosity
|
||||
self.booster = booster
|
||||
@ -514,6 +533,7 @@ class XGBModel(XGBModelBase):
|
||||
self.min_child_weight = min_child_weight
|
||||
self.max_delta_step = max_delta_step
|
||||
self.subsample = subsample
|
||||
self.sampling_method = sampling_method
|
||||
self.colsample_bytree = colsample_bytree
|
||||
self.colsample_bylevel = colsample_bylevel
|
||||
self.colsample_bynode = colsample_bynode
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user