- Pass obj info into tree updater as const pointer.
This way we don't have to initialize the learner model param before configuring gbm, hence
breaking up the dependency of configurations.
- Define a new tree struct embedded in the `RegTree`.
- Provide dispatching functions in `RegTree`.
- Fix some c++-17 warnings about the use of nodiscard (currently we disable the warning on
the CI).
- Use uint32_t instead of size_t for `bst_target_t` as it has a defined size and can be used
as part of dmlc parameter.
- Hide the `Segment` struct inside the categorical split matrix.
* Prepare for improving Windows networking compatibility.
* Include dmlc filesystem indirectly as dmlc/filesystem.h includes windows.h, which
conflicts with winsock2.h
* Define `NOMINMAX` conditionally.
* Link the winsock library when mysys32 is used.
* Add config file for read the doc.
- Remove unused parameters. There are still many warnings that are not yet
addressed. Currently, the warnings in dmlc-core dominate the error log.
- Remove `distributed` parameter from metric.
- Fixes some warnings about signed comparison.
* Pass sparse page as adapter, which prepares for quantile dmatrix.
* Remove old external memory code like `rbegin` and extra `Init` function.
* Simplify type dispatch.
Support adaptive tree, a feature supported by both sklearn and lightgbm. The tree leaf is recomputed based on residue of labels and predictions after construction.
For l1 error, the optimal value is the median (50 percentile).
This is marked as experimental support for the following reasons:
- The value is not well defined for distributed training, where we might have empty leaves for local workers. Right now I just use the original leaf value for computing the average with other workers, which might cause significant errors.
- Some follow-ups are required, for exact, pruner, and optimization for quantile function. Also, we need to calculate the initial estimation.
* Generate column matrix from gHistIndex.
* Avoid synchronization with the sparse page once the cache is written.
* Cleanups: Remove member variables/functions, change the update routine to look like approx and gpu_hist.
* Remove pruner.
* Extract partitioner from hist.
* Implement categorical data support by passing the gradient index directly into the partitioner.
* Organize/update document.
* Remove code for negative hessian.