9 Commits

Author SHA1 Message Date
Jiaming Yuan
f0064c07ab
Refactor configuration [Part II]. (#4577)
* Refactor configuration [Part II].

* General changes:
** Remove `Init` methods to avoid ambiguity.
** Remove `Configure(std::map<>)` to avoid redundant copying and prepare for
   parameter validation. (`std::vector` is returned from `InitAllowUnknown`).
** Add name to tree updaters for easier debugging.

* Learner changes:
** Make `LearnerImpl` the only source of configuration.

    All configurations are stored and carried out by `LearnerImpl::Configure()`.

** Remove booster in C API.

    Originally kept for "compatibility reason", but did not state why.  So here
    we just remove it.

** Add a `metric_names_` field in `LearnerImpl`.
** Remove `LazyInit`.  Configuration will always be lazy.
** Run `Configure` before every iteration.

* Predictor changes:
** Allocate both cpu and gpu predictor.
** Remove cpu_predictor from gpu_predictor.

    `GBTree` is now used to dispatch the predictor.

** Remove some GPU Predictor tests.

* IO

No IO changes.  The binary model format stability is tested by comparing
hashing value of save models between two commits
2019-07-20 08:34:56 -04:00
sriramch
90f683b25b Set the appropriate device before freeing device memory... (#4566)
* - set the appropriate device before freeing device memory...
   - pr #4532 added a global memory tracker/logger to keep track of number of (de)allocations
     and peak memory usage on a per device basis.
   - this pr adds the appropriate check to make sure that the (de)allocation counts and memory usages
     makes sense for the device. since verbosity is typically increased on debug/non-retail builds.  
* - pre-create cub allocators and reuse them
   - create them once and not resize them dynamically. we need to ensure that these allocators
     are created and destroyed exactly once so that the appropriate device id's are set
2019-06-18 14:58:05 +12:00
Jiaming Yuan
2f1319f273
Add rmsle metric and reg:squaredlogerror objective (#4541) 2019-06-11 05:48:27 +08:00
Jiaming Yuan
c589eff941
De-duplicate GPU parameters. (#4454)
* Only define `gpu_id` and `n_gpus` in `LearnerTrainParam`
* Pass LearnerTrainParam through XGBoost vid factory method.
* Disable all GPU usage when GPU related parameters are not specified (fixes XGBoost choosing GPU over aggressively).
* Test learner train param io.
* Fix gpu pickling.
2019-05-29 11:55:57 +08:00
Rong Ou
eaab364a63 More explict sharding methods for device memory (#4396)
* Rename the Reshard method to Shard

* Add a new Reshard method for sharding a vector that's already sharded
2019-05-01 11:47:22 +12:00
Jiaming Yuan
84d992babc
GPU multiclass metrics (#4368)
* Port multi classes metrics to CUDA.
2019-04-15 17:47:47 +08:00
Jiaming Yuan
7b9043cf71
Fix clang-tidy warnings. (#4149)
* Upgrade gtest for clang-tidy.
* Use CMake to install GTest instead of mv.
* Don't enforce clang-tidy to return 0 due to errors in thrust.
* Add a small test for tidy itself.

* Reformat.
2019-03-13 02:25:51 +08:00
Jiaming Yuan
2e618af743
Fix cpplint. (#4157)
* Add comment after #endif.
* Add missing headers.
2019-02-18 00:16:29 +08:00
Jiaming Yuan
48dddfd635
Porting elementwise metrics to GPU. (#3952)
* Port elementwise metrics to GPU.

* All elementwise metrics are converted to static polymorphic.
* Create a reducer for metrics reduction.
* Remove const of Metric::Eval to accommodate CubMemory.
2018-12-01 18:46:45 +13:00