xgboost/src/metric/elementwise_metric.cu
Jiaming Yuan 2e618af743
Fix cpplint. (#4157)
* Add comment after #endif.
* Add missing headers.
2019-02-18 00:16:29 +08:00

407 lines
12 KiB
Plaintext

/*!
* Copyright 2015-2018 by Contributors
* \file elementwise_metric.cc
* \brief evaluation metrics for elementwise binary or regression.
* \author Kailong Chen, Tianqi Chen
*/
#include <rabit/rabit.h>
#include <xgboost/metric.h>
#include <dmlc/registry.h>
#include <cmath>
#include "metric_param.h"
#include "../common/math.h"
#include "../common/common.h"
#if defined(XGBOOST_USE_CUDA)
#include <thrust/iterator/counting_iterator.h>
#include <thrust/transform_reduce.h>
#include <thrust/execution_policy.h>
#include <thrust/functional.h> // thrust::plus<>
#include "../common/device_helpers.cuh"
#endif // XGBOOST_USE_CUDA
namespace xgboost {
namespace metric {
// tag the this file, used by force static link later.
DMLC_REGISTRY_FILE_TAG(elementwise_metric);
struct PackedReduceResult {
double residue_sum_;
double weights_sum_;
XGBOOST_DEVICE PackedReduceResult() : residue_sum_{0}, weights_sum_{0} {}
XGBOOST_DEVICE PackedReduceResult(double residue, double weight) :
residue_sum_{residue}, weights_sum_{weight} {}
XGBOOST_DEVICE
PackedReduceResult operator+(PackedReduceResult const& other) const {
return PackedReduceResult { residue_sum_ + other.residue_sum_,
weights_sum_ + other.weights_sum_ };
}
};
template <typename EvalRow>
class MetricsReduction {
public:
explicit MetricsReduction(EvalRow policy) :
policy_(std::move(policy)) {}
PackedReduceResult CpuReduceMetrics(
const HostDeviceVector<bst_float>& weights,
const HostDeviceVector<bst_float>& labels,
const HostDeviceVector<bst_float>& preds) const {
size_t ndata = labels.Size();
const auto& h_labels = labels.HostVector();
const auto& h_weights = weights.HostVector();
const auto& h_preds = preds.HostVector();
bst_float residue_sum = 0;
bst_float weights_sum = 0;
#pragma omp parallel for reduction(+: residue_sum, weights_sum) schedule(static)
for (omp_ulong i = 0; i < ndata; ++i) {
const bst_float wt = h_weights.size() > 0 ? h_weights[i] : 1.0f;
residue_sum += policy_.EvalRow(h_labels[i], h_preds[i]) * wt;
weights_sum += wt;
}
PackedReduceResult res { residue_sum, weights_sum };
return res;
}
#if defined(XGBOOST_USE_CUDA)
PackedReduceResult DeviceReduceMetrics(
GPUSet::GpuIdType device_id,
size_t device_index,
const HostDeviceVector<bst_float>& weights,
const HostDeviceVector<bst_float>& labels,
const HostDeviceVector<bst_float>& preds) {
size_t n_data = preds.DeviceSize(device_id);
thrust::counting_iterator<size_t> begin(0);
thrust::counting_iterator<size_t> end = begin + n_data;
auto s_label = labels.DeviceSpan(device_id);
auto s_preds = preds.DeviceSpan(device_id);
auto s_weights = weights.DeviceSpan(device_id);
bool const is_null_weight = weights.Size() == 0;
auto d_policy = policy_;
PackedReduceResult result = thrust::transform_reduce(
thrust::cuda::par(allocators_.at(device_index)),
begin, end,
[=] XGBOOST_DEVICE(size_t idx) {
bst_float weight = is_null_weight ? 1.0f : s_weights[idx];
bst_float residue = d_policy.EvalRow(s_label[idx], s_preds[idx]);
residue *= weight;
return PackedReduceResult{ residue, weight };
},
PackedReduceResult(),
thrust::plus<PackedReduceResult>());
return result;
}
#endif // XGBOOST_USE_CUDA
PackedReduceResult Reduce(
GPUSet devices,
const HostDeviceVector<bst_float>& weights,
const HostDeviceVector<bst_float>& labels,
const HostDeviceVector<bst_float>& preds) {
PackedReduceResult result;
if (devices.IsEmpty()) {
result = CpuReduceMetrics(weights, labels, preds);
}
#if defined(XGBOOST_USE_CUDA)
else { // NOLINT
if (allocators_.size() != devices.Size()) {
allocators_.clear();
allocators_.resize(devices.Size());
}
preds.Reshard(devices);
labels.Reshard(devices);
weights.Reshard(devices);
std::vector<PackedReduceResult> res_per_device(devices.Size());
#pragma omp parallel for schedule(static, 1) if (devices.Size() > 1)
for (GPUSet::GpuIdType id = *devices.begin(); id < *devices.end(); ++id) {
dh::safe_cuda(cudaSetDevice(id));
size_t index = devices.Index(id);
res_per_device.at(index) =
DeviceReduceMetrics(id, index, weights, labels, preds);
}
for (size_t i = 0; i < devices.Size(); ++i) {
result.residue_sum_ += res_per_device[i].residue_sum_;
result.weights_sum_ += res_per_device[i].weights_sum_;
}
}
#endif // defined(XGBOOST_USE_CUDA)
return result;
}
private:
EvalRow policy_;
#if defined(XGBOOST_USE_CUDA)
std::vector<dh::CubMemory> allocators_;
#endif // defined(XGBOOST_USE_CUDA)
};
struct EvalRowRMSE {
char const *Name() const {
return "rmse";
}
XGBOOST_DEVICE bst_float EvalRow(bst_float label, bst_float pred) const {
bst_float diff = label - pred;
return diff * diff;
}
static bst_float GetFinal(bst_float esum, bst_float wsum) {
return std::sqrt(esum / wsum);
}
};
struct EvalRowMAE {
const char *Name() const {
return "mae";
}
XGBOOST_DEVICE bst_float EvalRow(bst_float label, bst_float pred) const {
return std::abs(label - pred);
}
static bst_float GetFinal(bst_float esum, bst_float wsum) {
return esum / wsum;
}
};
struct EvalRowLogLoss {
const char *Name() const {
return "logloss";
}
XGBOOST_DEVICE bst_float EvalRow(bst_float y, bst_float py) const {
const bst_float eps = 1e-16f;
const bst_float pneg = 1.0f - py;
if (py < eps) {
return -y * std::log(eps) - (1.0f - y) * std::log(1.0f - eps);
} else if (pneg < eps) {
return -y * std::log(1.0f - eps) - (1.0f - y) * std::log(eps);
} else {
return -y * std::log(py) - (1.0f - y) * std::log(pneg);
}
}
static bst_float GetFinal(bst_float esum, bst_float wsum) {
return esum / wsum;
}
};
struct EvalError {
explicit EvalError(const char* param) {
if (param != nullptr) {
CHECK_EQ(sscanf(param, "%f", &threshold_), 1)
<< "unable to parse the threshold value for the error metric";
has_param_ = true;
} else {
threshold_ = 0.5f;
has_param_ = false;
}
}
const char *Name() const {
static std::string name;
if (has_param_) {
std::ostringstream os;
os << "error";
if (threshold_ != 0.5f) os << '@' << threshold_;
name = os.str();
return name.c_str();
} else {
return "error";
}
}
XGBOOST_DEVICE bst_float EvalRow(
bst_float label, bst_float pred) const {
// assume label is in [0,1]
return pred > threshold_ ? 1.0f - label : label;
}
static bst_float GetFinal(bst_float esum, bst_float wsum) {
return esum / wsum;
}
private:
bst_float threshold_;
bool has_param_;
};
struct EvalPoissonNegLogLik {
const char *Name() const {
return "poisson-nloglik";
}
XGBOOST_DEVICE bst_float EvalRow(bst_float y, bst_float py) const {
const bst_float eps = 1e-16f;
if (py < eps) py = eps;
return common::LogGamma(y + 1.0f) + py - std::log(py) * y;
}
static bst_float GetFinal(bst_float esum, bst_float wsum) {
return esum / wsum;
}
};
struct EvalGammaDeviance {
const char *Name() const {
return "gamma-deviance";
}
XGBOOST_DEVICE bst_float EvalRow(bst_float label, bst_float pred) const {
bst_float epsilon = 1.0e-9;
bst_float tmp = label / (pred + epsilon);
return tmp - std::log(tmp) - 1;
}
static bst_float GetFinal(bst_float esum, bst_float wsum) {
return 2 * esum;
}
};
struct EvalGammaNLogLik {
static const char *Name() {
return "gamma-nloglik";
}
XGBOOST_DEVICE bst_float EvalRow(bst_float y, bst_float py) const {
bst_float psi = 1.0;
bst_float theta = -1. / py;
bst_float a = psi;
bst_float b = -std::log(-theta);
bst_float c = 1. / psi * std::log(y/psi) - std::log(y) - common::LogGamma(1. / psi);
return -((y * theta - b) / a + c);
}
static bst_float GetFinal(bst_float esum, bst_float wsum) {
return esum / wsum;
}
};
struct EvalTweedieNLogLik {
explicit EvalTweedieNLogLik(const char* param) {
CHECK(param != nullptr)
<< "tweedie-nloglik must be in format tweedie-nloglik@rho";
rho_ = atof(param);
CHECK(rho_ < 2 && rho_ >= 1)
<< "tweedie variance power must be in interval [1, 2)";
}
const char *Name() const {
static std::string name;
std::ostringstream os;
os << "tweedie-nloglik@" << rho_;
name = os.str();
return name.c_str();
}
XGBOOST_DEVICE bst_float EvalRow(bst_float y, bst_float p) const {
bst_float a = y * std::exp((1 - rho_) * std::log(p)) / (1 - rho_);
bst_float b = std::exp((2 - rho_) * std::log(p)) / (2 - rho_);
return -a + b;
}
static bst_float GetFinal(bst_float esum, bst_float wsum) {
return esum / wsum;
}
protected:
bst_float rho_;
};
/*!
* \brief base class of element-wise evaluation
* \tparam Derived the name of subclass
*/
template<typename Policy>
struct EvalEWiseBase : public Metric {
EvalEWiseBase() : policy_{}, reducer_{policy_} {}
explicit EvalEWiseBase(char const* policy_param) :
policy_{policy_param}, reducer_{policy_} {}
void Configure(
const std::vector<std::pair<std::string, std::string> >& args) override {
param_.InitAllowUnknown(args);
}
bst_float Eval(const HostDeviceVector<bst_float>& preds,
const MetaInfo& info,
bool distributed) override {
CHECK_NE(info.labels_.Size(), 0U) << "label set cannot be empty";
CHECK_EQ(preds.Size(), info.labels_.Size())
<< "label and prediction size not match, "
<< "hint: use merror or mlogloss for multi-class classification";
const auto ndata = static_cast<omp_ulong>(info.labels_.Size());
// Dealing with ndata < n_gpus.
GPUSet devices = GPUSet::All(param_.gpu_id, param_.n_gpus, ndata);
PackedReduceResult result =
reducer_.Reduce(devices, info.weights_, info.labels_, preds);
double dat[2] { result.residue_sum_, result.weights_sum_ };
if (distributed) {
rabit::Allreduce<rabit::op::Sum>(dat, 2);
}
return Policy::GetFinal(dat[0], dat[1]);
}
const char* Name() const override {
return policy_.Name();
}
private:
Policy policy_;
MetricParam param_;
MetricsReduction<Policy> reducer_;
};
XGBOOST_REGISTER_METRIC(RMSE, "rmse")
.describe("Rooted mean square error.")
.set_body([](const char* param) { return new EvalEWiseBase<EvalRowRMSE>(); });
XGBOOST_REGISTER_METRIC(MAE, "mae")
.describe("Mean absolute error.")
.set_body([](const char* param) { return new EvalEWiseBase<EvalRowMAE>(); });
XGBOOST_REGISTER_METRIC(LogLoss, "logloss")
.describe("Negative loglikelihood for logistic regression.")
.set_body([](const char* param) { return new EvalEWiseBase<EvalRowLogLoss>(); });
XGBOOST_REGISTER_METRIC(PossionNegLoglik, "poisson-nloglik")
.describe("Negative loglikelihood for poisson regression.")
.set_body([](const char* param) { return new EvalEWiseBase<EvalPoissonNegLogLik>(); });
XGBOOST_REGISTER_METRIC(GammaDeviance, "gamma-deviance")
.describe("Residual deviance for gamma regression.")
.set_body([](const char* param) { return new EvalEWiseBase<EvalGammaDeviance>(); });
XGBOOST_REGISTER_METRIC(GammaNLogLik, "gamma-nloglik")
.describe("Negative log-likelihood for gamma regression.")
.set_body([](const char* param) { return new EvalEWiseBase<EvalGammaNLogLik>(); });
XGBOOST_REGISTER_METRIC(Error, "error")
.describe("Binary classification error.")
.set_body([](const char* param) { return new EvalEWiseBase<EvalError>(param); });
XGBOOST_REGISTER_METRIC(TweedieNLogLik, "tweedie-nloglik")
.describe("tweedie-nloglik@rho for tweedie regression.")
.set_body([](const char* param) {
return new EvalEWiseBase<EvalTweedieNLogLik>(param);
});
} // namespace metric
} // namespace xgboost