129 Commits

Author SHA1 Message Date
Jiaming Yuan
97ed944209
Unify the hist tree method for different devices. (#9363) 2023-07-11 10:04:39 +08:00
Jiaming Yuan
41c6813496
Preserve order of saved updaters config. (#9355)
- Save the updater sequence as an array instead of object.
- Warn only once.

The compatibility is kept, but we should be able to break it as the config is not loaded
in pickle model and it's declared to be not stable.
2023-07-05 20:20:07 +08:00
Jiaming Yuan
645037e376
Improve test coverage with predictor configuration. (#9354)
* Improve test coverage with predictor configuration.

- Test with ext memory.
- Test with QDM.
- Test with dart.
2023-07-05 15:17:22 +08:00
Jiaming Yuan
39390cc2ee
[breaking] Remove the predictor param, allow fallback to prediction using DMatrix. (#9129)
- A `DeviceOrd` struct is implemented to indicate the device. It will eventually replace the `gpu_id` parameter.
- The `predictor` parameter is removed.
- Fallback to `DMatrix` when `inplace_predict` is not available.
- The heuristic for choosing a predictor is only used during training.
2023-07-03 19:23:54 +08:00
Jiaming Yuan
f4798718c7
Use hist as the default tree method. (#9320) 2023-06-27 23:04:24 +08:00
Jiaming Yuan
bc267dd729
Use ptr from mmap for GHistIndexMatrix and ColumnMatrix. (#9315)
* Use ptr from mmap for `GHistIndexMatrix` and `ColumnMatrix`.

- Define a resource for holding various types of memory pointers.
- Define ref vector for holding resources.
- Swap the underlying resources for GHist and ColumnM.
- Add documentation for current status.
- s390x support is removed. It should work if you can compile XGBoost, all the old workaround code does is to get GCC to compile.
2023-06-27 19:05:46 +08:00
Jiaming Yuan
acc110c251
[MT-TREE] Support prediction cache and model slicing. (#8968)
- Fix prediction range.
- Support prediction cache in mt-hist.
- Support model slicing.
- Make the booster a Python iterable by defining `__iter__`.
- Cleanup removed/deprecated parameters.
- A new field in the output model `iteration_indptr` for pointing to the ranges of trees for each iteration.
2023-03-27 23:10:54 +08:00
Jiaming Yuan
151882dd26
Initial support for multi-target tree. (#8616)
* Implement multi-target for hist.

- Add new hist tree builder.
- Move data fetchers for tests.
- Dispatch function calls in gbm base on the tree type.
2023-03-22 23:49:56 +08:00
Jiaming Yuan
a551bed803
Remove duplicated learning rate parameter. (#8941) 2023-03-22 20:51:14 +08:00
Jiaming Yuan
9bade7203a
Remove public access to tree model param. (#8902)
* Make tree model param a private member.
* Number of features and targets are immutable after construction.

This is to reduce the number of places where we can run configuration.
2023-03-13 20:55:10 +08:00
Jiaming Yuan
6deaec8027
Pass obj info by reference instead of by value. (#8889)
- Pass obj info into tree updater as const pointer.

This way we don't have to initialize the learner model param before configuring gbm, hence
breaking up the dependency of configurations.
2023-03-11 01:38:28 +08:00
Jiaming Yuan
228a46e8ad
Support learning rate for zero-hessian objectives. (#8866) 2023-03-06 20:33:28 +08:00
Jiaming Yuan
cfa994d57f
Multi-target support for L1 error. (#8652)
- Add matrix support to the median function.
- Iterate through each target for quantile computation.
2023-01-11 05:51:14 +08:00
Jiaming Yuan
26c9882e23
Fix loading GPU pickle with a CPU-only xgboost distribution. (#8632)
We can handle loading the pickle on a CPU-only machine if the XGBoost is built with CUDA
enabled (Linux and Windows PyPI package), but not if the distribution is CPU-only (macOS
PyPI package).
2023-01-05 02:14:30 +08:00
Jiaming Yuan
3e26107a9c
Rename and extract Context. (#8528)
* Rename `GenericParameter` to `Context`.
* Rename header file to reflect the change.
* Rename all references.
2022-12-07 04:58:54 +08:00
Jiaming Yuan
3fc1046fd3
Reduce compiler warnings on CPU-only build. (#8483) 2022-11-29 00:04:16 +08:00
Rong Ou
668b8a0ea4
[Breaking] Switch from rabit to the collective communicator (#8257)
* Switch from rabit to the collective communicator

* fix size_t specialization

* really fix size_t

* try again

* add include

* more include

* fix lint errors

* remove rabit includes

* fix pylint error

* return dict from communicator context

* fix communicator shutdown

* fix dask test

* reset communicator mocklist

* fix distributed tests

* do not save device communicator

* fix jvm gpu tests

* add python test for federated communicator

* Update gputreeshap submodule

Co-authored-by: Hyunsu Philip Cho <chohyu01@cs.washington.edu>
2022-10-05 14:39:01 -08:00
Jiaming Yuan
fffb1fca52
Calculate base_score based on input labels for mae. (#8107)
Fit an intercept as base score for abs loss.
2022-09-20 20:53:54 +08:00
Jiaming Yuan
1a33b50a0d
Fix compiler warnings. (#7974)
- Remove unused parameters. There are still many warnings that are not yet
addressed. Currently, the warnings in dmlc-core dominate the error log.
- Remove `distributed` parameter from metric.
- Fixes some warnings about signed comparison.
2022-06-06 22:56:25 +08:00
Jiaming Yuan
765097d514
Simplify inplace-predict. (#7910)
Pass the `X` as part of Proxy DMatrix instead of an independent `dmlc::any`.
2022-05-18 17:52:00 +08:00
Jiaming Yuan
fdf533f2b9
[POC] Experimental support for l1 error. (#7812)
Support adaptive tree, a feature supported by both sklearn and lightgbm.  The tree leaf is recomputed based on residue of labels and predictions after construction.

For l1 error, the optimal value is the median (50 percentile).

This is marked as experimental support for the following reasons:
- The value is not well defined for distributed training, where we might have empty leaves for local workers. Right now I just use the original leaf value for computing the average with other workers, which might cause significant errors.
- Some follow-ups are required, for exact, pruner, and optimization for quantile function. Also, we need to calculate the initial estimation.
2022-04-26 21:41:55 +08:00
Jiaming Yuan
3c9b04460a
Move num_parallel_tree to model parameter. (#7751)
The size of forest should be a property of model itself instead of a training
hyper-parameter.
2022-03-29 02:32:42 +08:00
Jiaming Yuan
81210420c6
Remove omp_get_max_threads (#7608)
This is the one last PR for removing omp global variable.

* Add context object to the `DMatrix`.  This bridges `DMatrix` with https://github.com/dmlc/xgboost/issues/7308 .
* Require context to be available at the construction time of booster.
* Add `n_threads` support for R csc DMatrix constructor.
* Remove `omp_get_max_threads` in R glue code.
* Remove threading utilities that rely on omp global variable.
2022-01-28 16:09:22 +08:00
Jiaming Yuan
001503186c
Rewrite approx (#7214)
This PR rewrites the approx tree method to use codebase from hist for better performance and code sharing.

The rewrite has many benefits:
- Support for both `max_leaves` and `max_depth`.
- Support for `grow_policy`.
- Support for mono constraint.
- Support for feature weights.
- Support for easier bin configuration (`max_bin`).
- Support for categorical data.
- Faster performance for most of the datasets. (many times faster)
- Support for prediction cache.
- Significantly better performance for external memory.
- Unites the code base between approx and hist.
2022-01-10 21:15:05 +08:00
Jiaming Yuan
28af6f9abb
Remove omp_get_max_threads in gbm and linear. (#7537)
* Use ctx in gbm.

* Use ctx threads in gbm and linear.
2022-01-05 03:28:52 +08:00
Jiaming Yuan
b06040b6d0
Implement a general array view. (#7365)
* Replace existing matrix and vector view.

This is to prepare for handling higher dimension data and prediction when we support multi-target models.
2021-11-05 04:16:11 +08:00
Jiaming Yuan
4100827971
Pass infomation about objective to tree methods. (#7385)
* Define the `ObjInfo` and pass it down to every tree updater.
2021-11-04 01:52:44 +08:00
Jiaming Yuan
d080b5a953
Fix model slicing. (#7149)
* Use correct pointer.
* Remove best_iteration/best_score.
2021-08-03 11:51:56 +08:00
Jiaming Yuan
72f9daf9b6
Fix gpu_id with custom objective. (#7015) 2021-06-09 14:51:17 +08:00
Jiaming Yuan
816b789bf0
Add predictor to skl constructor. (#7000) 2021-05-29 04:52:56 +08:00
Jiaming Yuan
86e60e3ba8
Guard against index error in prediction. (#6982)
* Remove `best_ntree_limit` from documents.
2021-05-25 23:24:59 +08:00
Livius
a4886c404a
Fix compilation error on x86 (#6964)
Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>
2021-05-14 13:31:49 +08:00
Andrew Ziem
3e7e426b36
Fix spelling in documents (#6948)
* Update roxygen2 doc.

Co-authored-by: fis <jm.yuan@outlook.com>
2021-05-11 20:44:36 +08:00
Jiaming Yuan
556a83022d
Implement unified update prediction cache for (gpu_)hist. (#6860)
* Implement utilites for linalg.
* Unify the update prediction cache functions.
* Implement update prediction cache for multi-class gpu hist.
2021-04-17 00:29:34 +08:00
Jiaming Yuan
79b8b560d2
Optimize dart inplace predict perf. (#6804) 2021-03-31 15:20:54 +08:00
Jiaming Yuan
a7083d3c13
Fix dart inplace prediction with GPU input. (#6777)
* Fix dart inplace predict with data on GPU, which might trigger a fatal check
for device access right.
* Avoid copying data whenever possible.
2021-03-25 12:00:32 +08:00
Louis Desreumaux
9b530e5697
Improve OpenMP exception handling (#6680) 2021-02-25 13:56:16 +08:00
ShvetsKS
9a0399e898
Removed unnecessary PredictBatch calls (#6700)
Co-authored-by: Shvets Kirill <kirill.shvets@intel.com>
2021-02-10 20:15:14 +08:00
Jiaming Yuan
e8c5c53e2f
Use Predictor for dart. (#6693)
* Use normal predictor for dart booster.
* Implement `inplace_predict` for dart.
* Enable `dart` for dask interface now that it's thread-safe.
* categorical data should be working out of box for dart now.

The implementation is not very efficient as it has to pull back the data and
apply weight for each tree, but still a significant improvement over previous
implementation as now we no longer binary search for each sample.

* Fix output prediction shape on dataframe.
2021-02-09 23:30:19 +08:00
Jiaming Yuan
4656b09d5d
[breaking] Add prediction fucntion for DMatrix and use inplace predict for dask. (#6668)
* Add a new API function for predicting on `DMatrix`.  This function aligns
with rest of the `XGBoosterPredictFrom*` functions on semantic of function
arguments.
* Purge `ntree_limit` from libxgboost, use iteration instead.
* [dask] Use `inplace_predict` by default for dask sklearn models.
* [dask] Run prediction shape inference on worker instead of client.

The breaking change is in the Python sklearn `apply` function, I made it to be
consistent with other prediction functions where `best_iteration` is used by
default.
2021-02-08 18:26:32 +08:00
ShvetsKS
7f4d3a91b9
Multiclass prediction caching for CPU Hist (#6550)
Co-authored-by: Kirill Shvets <kirill.shvets@intel.com>
2021-01-13 04:42:07 +08:00
Jiaming Yuan
f2f7dd87b8
Use view for SparsePage exclusively. (#6590) 2021-01-11 18:04:55 +08:00
Jack Dunn
51e6531315
Fix missing space in warning message (#6340) 2020-11-04 06:03:16 -05:00
Jiaming Yuan
2cc9662005
Support slicing tree model (#6302)
This PR is meant the end the confusion around best_ntree_limit and unify model slicing. We have multi-class and random forests, asking users to understand how to set ntree_limit is difficult and error prone.

* Implement the save_best option in early stopping.

Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2020-11-02 23:27:39 -08:00
Jiaming Yuan
cc76724762
Reduce warning. (#6273) 2020-10-27 12:24:19 -07:00
Igor Moura
d1254808d5
Clean up C++ warnings (#6213) 2020-10-19 23:02:33 +08:00
Rory Mitchell
dda9e1e487
Update GPUTreeshap (#6163)
* Reduce shap test duration

* Test interoperability with shap package

* Add feature interactions

* Update GPUTreeShap
2020-09-28 09:43:47 +13:00
Vladislav Epifanov
388f975cf5
Introducing DPC++-based plugin (predictor, objective function) supporting oneAPI programming model (#5825)
* Added plugin with DPC++-based predictor and objective function

* Update CMakeLists.txt

* Update regression_obj_oneapi.cc

* Added README.md for OneAPI plugin

* Added OneAPI predictor support to gbtree

* Update README.md

* Merged kernels in gradient computation. Enabled multiple loss functions with DPC++ backend

* Aligned plugin CMake files with latest master changes. Fixed whitespace typos

* Removed debug output

* [CI] Make oneapi_plugin a CMake target

* Added tests for OneAPI plugin for predictor and obj. functions

* Temporarily switched to default selector for device dispacthing in OneAPI plugin to enable execution in environments without gpus

* Updated readme file.

* Fixed USM usage in predictor

* Removed workaround with explicit templated names for DPC++ kernels

* Fixed warnings in plugin tests

* Fix CMake build of gtest

Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
2020-08-08 18:40:40 -07:00
Philip Hyunsu Cho
1d22a9be1c
Revert "Reorder includes. (#5749)" (#5771)
This reverts commit d3a0efbf162f3dceaaf684109e1178c150b32de3.
2020-06-09 10:29:28 -07:00
Jiaming Yuan
d3a0efbf16
Reorder includes. (#5749)
* Reorder includes.

* R.
2020-06-03 17:30:47 +12:00