* Robust regularization of AFT gradient and hessian
* Fix AFT doc; expose it to tutorial TOC
* Apply robust regularization to uncensored case too
* Revise unit test slightly
* Fix lint
* Update test_survival.py
* Use GradientPairPrecise
* Remove unused variables
* [WIP] Add lower and upper bounds on the label for survival analysis
* Update test MetaInfo.SaveLoadBinary to account for extra two fields
* Don't clear qids_ for version 2 of MetaInfo
* Add SetInfo() and GetInfo() method for lower and upper bounds
* changes to aft
* Add parameter class for AFT; use enum's to represent distribution and event type
* Add AFT metric
* changes to neg grad to grad
* changes to binomial loss
* changes to overflow
* changes to eps
* changes to code refactoring
* changes to code refactoring
* changes to code refactoring
* Re-factor survival analysis
* Remove aft namespace
* Move function bodies out of AFTNormal and AFTLogistic, to reduce clutter
* Move function bodies out of AFTLoss, to reduce clutter
* Use smart pointer to store AFTDistribution and AFTLoss
* Rename AFTNoiseDistribution enum to AFTDistributionType for clarity
The enum class was not a distribution itself but a distribution type
* Add AFTDistribution::Create() method for convenience
* changes to extreme distribution
* changes to extreme distribution
* changes to extreme
* changes to extreme distribution
* changes to left censored
* deleted cout
* changes to x,mu and sd and code refactoring
* changes to print
* changes to hessian formula in censored and uncensored
* changes to variable names and pow
* changes to Logistic Pdf
* changes to parameter
* Expose lower and upper bound labels to R package
* Use example weights; normalize log likelihood metric
* changes to CHECK
* changes to logistic hessian to standard formula
* changes to logistic formula
* Comply with coding style guideline
* Revert back Rabit submodule
* Revert dmlc-core submodule
* Comply with coding style guideline (clang-tidy)
* Fix an error in AFTLoss::Gradient()
* Add missing files to amalgamation
* Address @RAMitchell's comment: minimize future change in MetaInfo interface
* Fix lint
* Fix compilation error on 32-bit target, when size_t == bst_uint
* Allocate sufficient memory to hold extra label info
* Use OpenMP to speed up
* Fix compilation on Windows
* Address reviewer's feedback
* Add unit tests for probability distributions
* Make Metric subclass of Configurable
* Address reviewer's feedback: Configure() AFT metric
* Add a dummy test for AFT metric configuration
* Complete AFT configuration test; remove debugging print
* Rename AFT parameters
* Clarify test comment
* Add a dummy test for AFT loss for uncensored case
* Fix a bug in AFT loss for uncensored labels
* Complete unit test for AFT loss metric
* Simplify unit tests for AFT metric
* Add unit test to verify aggregate output from AFT metric
* Use EXPECT_* instead of ASSERT_*, so that we run all unit tests
* Use aft_loss_param when serializing AFTObj
This is to be consistent with AFT metric
* Add unit tests for AFT Objective
* Fix OpenMP bug; clarify semantics for shared variables used in OpenMP loops
* Add comments
* Remove AFT prefix from probability distribution; put probability distribution in separate source file
* Add comments
* Define kPI and kEulerMascheroni in probability_distribution.h
* Add probability_distribution.cc to amalgamation
* Remove unnecessary diff
* Address reviewer's feedback: define variables where they're used
* Eliminate all INFs and NANs from AFT loss and gradient
* Add demo
* Add tutorial
* Fix lint
* Use 'survival:aft' to be consistent with 'survival:cox'
* Move sample data to demo/data
* Add visual demo with 1D toy data
* Add Python tests
Co-authored-by: Philip Cho <chohyu01@cs.washington.edu>
- move segment sorter to common
- this is the first of a handful of pr's that splits the larger pr #5326
- it moves this facility to common (from ranking objective class), so that it can be
used for metric computation
- it also wraps all the bald device pointers into span.
* - implementation of map ranking algorithm
- also effected necessary suggestions mentioned in the earlier ranking pr's
- made some performance improvements to the ndcg algo as well
* Use `UpdateAllowUnknown' for non-model related parameter.
Model parameter can not pack an additional boolean value due to binary IO
format. This commit deals only with non-model related parameter configuration.
* Add tidy command line arg for use-dmlc-gtest.
* - pairwise ranking objective implementation on gpu
- there are couple of more algorithms (ndcg and map) for which support will be added
as follow-up pr's
- with no label groups defined, get gradient is 90x faster on gpu (120m instance
mortgage dataset)
- it can perform by an order of magnitude faster with ~ 10 groups (and adequate cores
for the cpu implementation)
* Add JSON config to rank obj.
* Apply Configurable to objective functions.
* Apply Model to Learner and Regtree, gbm.
* Add Load/SaveConfig to objs.
* Refactor obj tests to use smart pointer.
* Dummy methods for Save/Load Model.
* Refactor configuration [Part II].
* General changes:
** Remove `Init` methods to avoid ambiguity.
** Remove `Configure(std::map<>)` to avoid redundant copying and prepare for
parameter validation. (`std::vector` is returned from `InitAllowUnknown`).
** Add name to tree updaters for easier debugging.
* Learner changes:
** Make `LearnerImpl` the only source of configuration.
All configurations are stored and carried out by `LearnerImpl::Configure()`.
** Remove booster in C API.
Originally kept for "compatibility reason", but did not state why. So here
we just remove it.
** Add a `metric_names_` field in `LearnerImpl`.
** Remove `LazyInit`. Configuration will always be lazy.
** Run `Configure` before every iteration.
* Predictor changes:
** Allocate both cpu and gpu predictor.
** Remove cpu_predictor from gpu_predictor.
`GBTree` is now used to dispatch the predictor.
** Remove some GPU Predictor tests.
* IO
No IO changes. The binary model format stability is tested by comparing
hashing value of save models between two commits
* Only define `gpu_id` and `n_gpus` in `LearnerTrainParam`
* Pass LearnerTrainParam through XGBoost vid factory method.
* Disable all GPU usage when GPU related parameters are not specified (fixes XGBoost choosing GPU over aggressively).
* Test learner train param io.
* Fix gpu pickling.
* Upgrade gtest for clang-tidy.
* Use CMake to install GTest instead of mv.
* Don't enforce clang-tidy to return 0 due to errors in thrust.
* Add a small test for tidy itself.
* Reformat.
* Make C++ unit tests run and pass on Windows
* Fix logic for external memory. The letter ':' is part of drive letter,
so remove the drive letter before splitting on ':'.
* Cosmetic syntax changes to keep MSVC happy.
* Fix lint
* Add Windows guard
* Implement Transform class.
* Add tests for softmax.
* Use Transform in regression, softmax and hinge objectives, except for Cox.
* Mark old gpu objective functions deprecated.
* static_assert for softmax.
* Split up multi-gpu tests.
* Replaced std::vector-based interfaces with HostDeviceVector-based interfaces.
- replacement was performed in the learner, boosters, predictors,
updaters, and objective functions
- only interfaces used in training were replaced;
interfaces like PredictInstance() still use std::vector
- refactoring necessary for replacement of interfaces was also performed,
such as using HostDeviceVector in prediction cache
* HostDeviceVector-based interfaces for custom objective function example plugin.
* Add interaction effects and cox loss
* Minimize whitespace changes
* Cox loss now no longer needs a pre-sorted dataset.
* Address code review comments
* Remove mem check, rename to pred_interactions, include bias
* Make lint happy
* More lint fixes
* Fix cox loss indexing
* Fix main effects and tests
* Fix lint
* Use half interaction values on the off-diagonals
* Fix lint again
* Added GPU objective function and no-copy interface.
- xgboost::HostDeviceVector<T> syncs automatically between host and device
- no-copy interfaces have been added
- default implementations just sync the data to host
and call the implementations with std::vector
- GPU objective function, predictor, histogram updater process data
directly on GPU
* Integrating a faster version of grow_gpu plugin
1. Removed the older files to reduce duplication
2. Moved all of the grow_gpu files under 'exact' folder
3. All of them are inside 'exact' namespace to avoid any conflicts
4. Fixed a bug in benchmark.py while running only 'grow_gpu' plugin
5. Added cub and googletest submodules to ease integration and unit-testing
6. Updates to CMakeLists.txt to directly build cuda objects into libxgboost
* Added support for building gpu plugins through make flow
1. updated makefile and config.mk to add right targets
2. added unit-tests for gpu exact plugin code
* 1. Added support for building gpu plugin using 'make' flow as well
2. Updated instructions for building and testing gpu plugin
* Fix travis-ci errors for PR#2360
1. lint errors on unit-tests
2. removed googletest, instead depended upon dmlc-core provide gtest cache
* Some more fixes to travis-ci lint failures PR#2360
* Added Rory's copyrights to the files containing code from both.
* updated copyright statement as per Rory's request
* moved the static datasets into a script to generate them at runtime
* 1. memory usage print when silent=0
2. tests/ and test/ folder organization
3. removal of the dependency of googletest for just building xgboost
4. coding style updates for .cuh as well
* Fixes for compilation warnings
* add cuda object files as well when JVM_BINDINGS=ON