81 Commits

Author SHA1 Message Date
Rory Mitchell
90cce38236
Remove single_precision_histogram for gpu_hist (#7828) 2022-05-03 14:53:19 +02:00
Jiaming Yuan
fdf533f2b9
[POC] Experimental support for l1 error. (#7812)
Support adaptive tree, a feature supported by both sklearn and lightgbm.  The tree leaf is recomputed based on residue of labels and predictions after construction.

For l1 error, the optimal value is the median (50 percentile).

This is marked as experimental support for the following reasons:
- The value is not well defined for distributed training, where we might have empty leaves for local workers. Right now I just use the original leaf value for computing the average with other workers, which might cause significant errors.
- Some follow-ups are required, for exact, pruner, and optimization for quantile function. Also, we need to calculate the initial estimation.
2022-04-26 21:41:55 +08:00
Jiaming Yuan
996cc705af
Small cleanup to hist tree method. (#7735)
* Remove special optimization using number of bins.
* Remove 1-based index for column sampling.
* Remove data layout.
* Unify update prediction cache.
2022-03-20 03:44:55 +08:00
Jiaming Yuan
0d0abe1845
Support optimal partitioning for GPU hist. (#7652)
* Implement `MaxCategory` in quantile.
* Implement partition-based split for GPU evaluation.  Currently, it's based on the existing evaluation function.
* Extract an evaluator from GPU Hist to store the needed states.
* Added some CUDA stream/event utilities.
* Update document with references.
* Fixed a bug in approx evaluator where the number of data points is less than the number of categories.
2022-02-15 03:03:12 +08:00
Jiaming Yuan
001503186c
Rewrite approx (#7214)
This PR rewrites the approx tree method to use codebase from hist for better performance and code sharing.

The rewrite has many benefits:
- Support for both `max_leaves` and `max_depth`.
- Support for `grow_policy`.
- Support for mono constraint.
- Support for feature weights.
- Support for easier bin configuration (`max_bin`).
- Support for categorical data.
- Faster performance for most of the datasets. (many times faster)
- Support for prediction cache.
- Significantly better performance for external memory.
- Unites the code base between approx and hist.
2022-01-10 21:15:05 +08:00
Jiaming Yuan
6ede12412c
Update dmlc-core and use data iter for GPU sampling tests. (#7398)
* Update dmlc-core.
* New parquet parser in dmlc-core.
* Use data iter for GPU sampling tests.
2021-11-06 05:12:49 +08:00
Jiaming Yuan
b06040b6d0
Implement a general array view. (#7365)
* Replace existing matrix and vector view.

This is to prepare for handling higher dimension data and prediction when we support multi-target models.
2021-11-05 04:16:11 +08:00
Jiaming Yuan
4100827971
Pass infomation about objective to tree methods. (#7385)
* Define the `ObjInfo` and pass it down to every tree updater.
2021-11-04 01:52:44 +08:00
Jiaming Yuan
7a1d67f9cb
[breaking] Use integer atomic for GPU histogram. (#7180)
On GPU we use rouding factor to truncate the gradient for deterministic results. This PR changes the gradient representation to fixed point number with exponent aligned with rounding factor.

    [breaking] Drop non-deterministic histogram.
    Use fixed point for shared memory.

This PR is to improve the performance of GPU Hist. 

Co-authored-by: Andy Adinets <aadinets@nvidia.com>
2021-08-28 05:17:05 +08:00
Jiaming Yuan
bd1f3a38f0
Rewrite sparse dmatrix using callbacks. (#7092)
- Reduce dependency on dmlc parsers and provide an interface for users to load data by themselves.
- Remove use of threaded iterator and IO queue.
- Remove `page_size`.
- Make sure the number of pages in memory is bounded.
- Make sure the cache can not be violated.
- Provide an interface for internal algorithms to process data asynchronously.
2021-07-16 12:33:31 +08:00
ShvetsKS
57c732655e
Merge lossgude and depthwise strategies for CPU hist (#7007)
* fix java/scala test: max depth is also valid parameter for lossguide

Co-authored-by: Kirill Shvets <kirill.shvets@intel.com>
2021-06-03 01:49:43 +08:00
Jiaming Yuan
556a83022d
Implement unified update prediction cache for (gpu_)hist. (#6860)
* Implement utilites for linalg.
* Unify the update prediction cache functions.
* Implement update prediction cache for multi-class gpu hist.
2021-04-17 00:29:34 +08:00
Jiaming Yuan
4f75f514ce
Fix GPU RF (#6755)
* Fix sampling.
2021-03-17 06:23:35 +08:00
Jiaming Yuan
444131a2e6
Add categorical data support to GPU Hist. (#6164) 2020-09-29 11:27:25 +08:00
Jiaming Yuan
2fcc4f2886
Unify evaluation functions. (#6037) 2020-08-26 14:23:27 +08:00
Jiaming Yuan
a144daf034
Limit tree depth for GPU hist. (#6045) 2020-08-22 19:34:52 +08:00
Jiaming Yuan
4d99c58a5f
Feature weights (#5962) 2020-08-18 19:55:41 +08:00
Rory Mitchell
b9649e7b8e
Refactor gpu_hist split evaluation (#5610)
* Refactor

* Rewrite evaluate splits

* Add more tests
2020-04-30 08:58:12 +12:00
Andy Adinets
73142041b9
For histograms, opting into maximum shared memory available per block. (#5491) 2020-04-21 14:56:42 +12:00
Rory Mitchell
ca4e05660e
Purge device_helpers.cuh (#5534)
* Simplifications with caching_device_vector

* Purge device helpers
2020-04-15 21:51:56 +12:00
Jiaming Yuan
6671b42dd4
Use ellpack for prediction only when sparsepage doesn't exist. (#5504) 2020-04-10 12:15:46 +08:00
Jiaming Yuan
0012f2ef93
Upgrade clang-tidy on CI. (#5469)
* Correct all clang-tidy errors.
* Upgrade clang-tidy to 10 on CI.

Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
2020-04-05 04:42:29 +08:00
Jiaming Yuan
459b175dc6
Split up test helpers header. (#5455) 2020-04-03 10:36:53 +08:00
Jiaming Yuan
4942da64ae
Refactor tests with data generator. (#5439) 2020-03-27 06:44:44 +08:00
Rory Mitchell
b745b7acce
Fix memory usage of device sketching (#5407) 2020-03-14 13:43:24 +13:00
Rory Mitchell
3ad4333b0e
Partial rewrite EllpackPage (#5352) 2020-03-11 10:15:53 +13:00
Rory Mitchell
a38e7bd19c
Sketching from adapters (#5365)
* Sketching from adapters

* Add weights test
2020-03-07 21:07:58 +13:00
Jiaming Yuan
8d06878bf9
Deterministic GPU histogram. (#5361)
* Use pre-rounding based method to obtain reproducible floating point
  summation.
* GPU Hist for regression and classification are bit-by-bit reproducible.
* Add doc.
* Switch to thrust reduce for `node_sum_gradient`.
2020-03-04 15:13:28 +08:00
Rory Mitchell
24ad9dec0b
Testing hist_util (#5251)
* Rank tests

* Remove categorical split specialisation

* Extend tests to multiple features, switch to WQSketch

* Add tests for SparseCuts

* Add external memory quantile tests, fix some existing tests
2020-02-14 14:36:43 +13:00
Jiaming Yuan
29eeea709a
Pass shared pointer instead of raw pointer to Learner. (#5302)
Extracted from https://github.com/dmlc/xgboost/pull/5220 .
2020-02-11 14:16:38 +08:00
Rong Ou
e4b74c4d22
Gradient based sampling for GPU Hist (#5093)
* Implement gradient based sampling for GPU Hist tree method.
* Add samplers and handle compacted page in GPU Hist.
2020-02-04 10:31:27 +08:00
Jiaming Yuan
ad4a1c732c
Small refinements for JSON model. (#5112)
* Naming consistency.

* Remove duplicated test.
2019-12-11 19:49:01 +08:00
Jiaming Yuan
7ef5b78003
Implement JSON IO for updaters (#5094)
* Implement JSON IO for updaters.

* Remove parameters in split evaluator.
2019-12-07 00:24:00 +08:00
Rong Ou
0afcc55d98 Support multiple batches in gpu_hist (#5014)
* Initial external memory training support for GPU Hist tree method.
2019-11-16 14:50:20 +08:00
Jiaming Yuan
97abcc7ee2
Extract interaction constraint from split evaluator. (#5034)
*  Extract interaction constraints from split evaluator.

The reason for doing so is mostly for model IO, where num_feature and interaction_constraints are copied in split evaluator. Also interaction constraint by itself is a feature selector, acting like column sampler and it's inefficient to bury it deep in the evaluator chain. Lastly removing one another copied parameter is a win.

*  Enable inc for approx tree method.

As now the implementation is spited up from evaluator class, it's also enabled for approx method.

*  Removing obsoleted code in colmaker.

They are never documented nor actually used in real world. Also there isn't a single test for those code blocks.

*  Unifying the types used for row and column.

As the size of input dataset is marching to billion, incorrect use of int is subject to overflow, also singed integer overflow is undefined behaviour. This PR starts the procedure for unifying used index type to unsigned integers. There's optimization that can utilize this undefined behaviour, but after some testings I don't see the optimization is beneficial to XGBoost.
2019-11-14 20:11:41 +08:00
Rong Ou
5b1715d97c Write ELLPACK pages to disk (#4879)
* add ellpack source
* add batch param
* extract function to parse cache info
* construct ellpack info separately
* push batch to ellpack page
* write ellpack page.
* make sparse page source reusable
2019-10-22 23:44:32 -04:00
Rong Ou
562bb0ae31 remove device shards (#4867) 2019-09-25 13:15:46 +08:00
Jiaming Yuan
0b89cd1dfa
Support gamma in GPU_Hist. (#4874)
* Just prevent building the tree instead of using an explicit pruner.
2019-09-24 10:16:08 +08:00
Rong Ou
125bcec62e Move ellpack page construction into DMatrix (#4833) 2019-09-16 23:50:55 -04:00
Rong Ou
733ed24dd9 further cleanup of single process multi-GPU code (#4810)
* use subspan in gpu predictor instead of copying
* Revise `HostDeviceVector`
2019-08-30 05:27:23 -04:00
Rong Ou
38ab79f889 Make HostDeviceVector single gpu only (#4773)
* Make HostDeviceVector single gpu only
2019-08-26 09:51:13 +12:00
Rong Ou
c5b229632d [BREAKING] prevent multi-gpu usage (#4749)
* prevent multi-gpu usage

* fix distributed test

* combine gpu predictor tests

* set upper bound on n_gpus
2019-08-13 09:11:35 +12:00
Rong Ou
6edddd7966 Refactor DMatrix to return batches of different page types (#4686)
* Use explicit template parameter for specifying page type.
2019-08-03 15:10:34 -04:00
Jiaming Yuan
f0064c07ab
Refactor configuration [Part II]. (#4577)
* Refactor configuration [Part II].

* General changes:
** Remove `Init` methods to avoid ambiguity.
** Remove `Configure(std::map<>)` to avoid redundant copying and prepare for
   parameter validation. (`std::vector` is returned from `InitAllowUnknown`).
** Add name to tree updaters for easier debugging.

* Learner changes:
** Make `LearnerImpl` the only source of configuration.

    All configurations are stored and carried out by `LearnerImpl::Configure()`.

** Remove booster in C API.

    Originally kept for "compatibility reason", but did not state why.  So here
    we just remove it.

** Add a `metric_names_` field in `LearnerImpl`.
** Remove `LazyInit`.  Configuration will always be lazy.
** Run `Configure` before every iteration.

* Predictor changes:
** Allocate both cpu and gpu predictor.
** Remove cpu_predictor from gpu_predictor.

    `GBTree` is now used to dispatch the predictor.

** Remove some GPU Predictor tests.

* IO

No IO changes.  The binary model format stability is tested by comparing
hashing value of save models between two commits
2019-07-20 08:34:56 -04:00
Jiaming Yuan
d9a47794a5 Fix CPU hist init for sparse dataset. (#4625)
* Fix CPU hist init for sparse dataset.

* Implement sparse histogram cut.
* Allow empty features.

* Fix windows build, don't use sparse in distributed environment.

* Comments.

* Smaller threshold.

* Fix windows omp.

* Fix msvc lambda capture.

* Fix MSVC macro.

* Fix MSVC initialization list.

* Fix MSVC initialization list x2.

* Preserve categorical feature behavior.

* Rename matrix to sparse cuts.
* Reuse UseGroup.
* Check for categorical data when adding cut.

Co-Authored-By: Philip Hyunsu Cho <chohyu01@cs.washington.edu>

* Sanity check.

* Fix comments.

* Fix comment.
2019-07-04 16:27:03 -07:00
Rong Ou
6125521caf fix compiler warning (#4588) 2019-06-21 04:06:26 +08:00
Rory Mitchell
221e163185
Refactor out row partitioning logic from gpu_hist, introduce caching device vectors (#4554) 2019-06-20 18:24:09 +12:00
Jiaming Yuan
ae05948e32
Feature interaction for GPU Hist. (#4534)
* GPU hist Interaction Constraints.
* Duplicate related parameters.
* Add tests for CPU interaction constraint.
* Add better error reporting.
* Thorough tests.
2019-06-19 18:11:02 +08:00
sriramch
6757654337 Optimizations for quantisation on device (#4572)
* - do not create device vectors for the entire sparse page while computing histograms...
   - while creating the compressed histogram indices, the row vector is created for the entire
     sparse page batch. this is needless as we only process chunks at a time based on a slice
     of the total gpu memory
   - this pr will allocate only as much as required to store the ppropriate row indices and the entries

* - do not dereference row_ptrs once the device_vector has been created to elide host copies of those counts
   - instead, grab the entry counts directly from the sparsepage
2019-06-19 10:50:25 +12:00
sriramch
a2042b685a - training with external memory - part 2 of 2 (#4526)
* - training with external memory - part 2 of 2
   - when external memory support is enabled, building of histogram indices are
     done incrementally for every sparse page
   - the entire set of input data is divided across multiple gpu's and the relative
     row positions within each device is tracked when building the compressed histogram buffer
   - this was tested using a mortgage dataset containing ~ 670m rows before 4xt4's could be
     saturated
2019-06-12 09:52:56 +12:00