xgboost/tests/cpp/tree/test_gpu_hist.cu
Rong Ou 0afcc55d98 Support multiple batches in gpu_hist (#5014)
* Initial external memory training support for GPU Hist tree method.
2019-11-16 14:50:20 +08:00

429 lines
14 KiB
Plaintext

/*!
* Copyright 2017-2019 XGBoost contributors
*/
#include <thrust/device_vector.h>
#include <dmlc/filesystem.h>
#include <xgboost/base.h>
#include <random>
#include <string>
#include <vector>
#include "../helpers.h"
#include "gtest/gtest.h"
#include "../../../src/data/sparse_page_source.h"
#include "../../../src/gbm/gbtree_model.h"
#include "../../../src/tree/updater_gpu_hist.cu"
#include "../../../src/tree/updater_gpu_common.cuh"
#include "../../../src/common/common.h"
#include "../../../src/tree/constraints.cuh"
namespace xgboost {
namespace tree {
TEST(GpuHist, DeviceHistogram) {
// Ensures that node allocates correctly after reaching `kStopGrowingSize`.
dh::SaveCudaContext{
[&]() {
dh::safe_cuda(cudaSetDevice(0));
constexpr size_t kNBins = 128;
constexpr size_t kNNodes = 4;
constexpr size_t kStopGrowing = kNNodes * kNBins * 2u;
DeviceHistogram<GradientPairPrecise, kStopGrowing> histogram;
histogram.Init(0, kNBins);
for (size_t i = 0; i < kNNodes; ++i) {
histogram.AllocateHistogram(i);
}
histogram.Reset();
ASSERT_EQ(histogram.Data().size(), kStopGrowing);
// Use allocated memory but do not erase nidx_map.
for (size_t i = 0; i < kNNodes; ++i) {
histogram.AllocateHistogram(i);
}
for (size_t i = 0; i < kNNodes; ++i) {
ASSERT_TRUE(histogram.HistogramExists(i));
}
// Erase existing nidx_map.
for (size_t i = kNNodes; i < kNNodes * 2; ++i) {
histogram.AllocateHistogram(i);
}
for (size_t i = 0; i < kNNodes; ++i) {
ASSERT_FALSE(histogram.HistogramExists(i));
}
}
};
}
std::vector<GradientPairPrecise> GetHostHistGpair() {
// 24 bins, 3 bins for each feature (column).
std::vector<GradientPairPrecise> hist_gpair = {
{0.8314f, 0.7147f}, {1.7989f, 3.7312f}, {3.3846f, 3.4598f},
{2.9277f, 3.5886f}, {1.8429f, 2.4152f}, {1.2443f, 1.9019f},
{1.6380f, 2.9174f}, {1.5657f, 2.5107f}, {2.8111f, 2.4776f},
{2.1322f, 3.0651f}, {3.2927f, 3.8540f}, {0.5899f, 0.9866f},
{1.5185f, 1.6263f}, {2.0686f, 3.1844f}, {2.4278f, 3.0950f},
{1.5105f, 2.1403f}, {2.6922f, 4.2217f}, {1.8122f, 1.5437f},
{0.0000f, 0.0000f}, {4.3245f, 5.7955f}, {1.6903f, 2.1103f},
{2.4012f, 4.4754f}, {3.6136f, 3.4303f}, {0.0000f, 0.0000f}
};
return hist_gpair;
}
template <typename GradientSumT>
void TestBuildHist(bool use_shared_memory_histograms) {
int const kNRows = 16, kNCols = 8;
TrainParam param;
std::vector<std::pair<std::string, std::string>> args {
{"max_depth", "6"},
{"max_leaves", "0"},
};
param.Init(args);
auto page = BuildEllpackPage(kNRows, kNCols);
BatchParam batch_param{};
GPUHistMakerDevice<GradientSumT> maker(0, page.get(), kNRows, param, kNCols, kNCols, batch_param);
maker.InitHistogram();
xgboost::SimpleLCG gen;
xgboost::SimpleRealUniformDistribution<bst_float> dist(0.0f, 1.0f);
std::vector<GradientPair> h_gpair(kNRows);
for (auto &gpair : h_gpair) {
bst_float grad = dist(&gen);
bst_float hess = dist(&gen);
gpair = GradientPair(grad, hess);
}
thrust::host_vector<common::CompressedByteT> h_gidx_buffer (page->gidx_buffer.size());
common::CompressedByteT* d_gidx_buffer_ptr = page->gidx_buffer.data();
dh::safe_cuda(cudaMemcpy(h_gidx_buffer.data(), d_gidx_buffer_ptr,
sizeof(common::CompressedByteT) * page->gidx_buffer.size(),
cudaMemcpyDeviceToHost));
maker.row_partitioner.reset(new RowPartitioner(0, kNRows));
maker.hist.AllocateHistogram(0);
dh::CopyVectorToDeviceSpan(maker.gpair, h_gpair);
maker.use_shared_memory_histograms = use_shared_memory_histograms;
maker.BuildHist(0);
DeviceHistogram<GradientSumT> d_hist = maker.hist;
auto node_histogram = d_hist.GetNodeHistogram(0);
// d_hist.data stored in float, not gradient pair
thrust::host_vector<GradientSumT> h_result (d_hist.Data().size() / 2);
size_t data_size =
sizeof(GradientSumT) /
(sizeof(GradientSumT) / sizeof(typename GradientSumT::ValueT));
data_size *= d_hist.Data().size();
dh::safe_cuda(cudaMemcpy(h_result.data(), node_histogram.data(), data_size,
cudaMemcpyDeviceToHost));
std::vector<GradientPairPrecise> solution = GetHostHistGpair();
std::cout << std::fixed;
for (size_t i = 0; i < h_result.size(); ++i) {
EXPECT_NEAR(h_result[i].GetGrad(), solution[i].GetGrad(), 0.01f);
EXPECT_NEAR(h_result[i].GetHess(), solution[i].GetHess(), 0.01f);
}
}
TEST(GpuHist, BuildHistGlobalMem) {
TestBuildHist<GradientPairPrecise>(false);
TestBuildHist<GradientPair>(false);
}
TEST(GpuHist, BuildHistSharedMem) {
TestBuildHist<GradientPairPrecise>(true);
TestBuildHist<GradientPair>(true);
}
HistogramCutsWrapper GetHostCutMatrix () {
HistogramCutsWrapper cmat;
cmat.SetPtrs({0, 3, 6, 9, 12, 15, 18, 21, 24});
cmat.SetMins({0.1f, 0.2f, 0.3f, 0.1f, 0.2f, 0.3f, 0.2f, 0.2f});
// 24 cut fields, 3 cut fields for each feature (column).
// Each row of the cut represents the cuts for a data column.
cmat.SetValues({0.30f, 0.67f, 1.64f,
0.32f, 0.77f, 1.95f,
0.29f, 0.70f, 1.80f,
0.32f, 0.75f, 1.85f,
0.18f, 0.59f, 1.69f,
0.25f, 0.74f, 2.00f,
0.26f, 0.74f, 1.98f,
0.26f, 0.71f, 1.83f});
return cmat;
}
// TODO(trivialfis): This test is over simplified.
TEST(GpuHist, EvaluateSplits) {
constexpr int kNRows = 16;
constexpr int kNCols = 8;
TrainParam param;
std::vector<std::pair<std::string, std::string>> args {
{"max_depth", "1"},
{"max_leaves", "0"},
// Disable all other parameters.
{"colsample_bynode", "1"},
{"colsample_bylevel", "1"},
{"colsample_bytree", "1"},
{"min_child_weight", "0.01"},
{"reg_alpha", "0"},
{"reg_lambda", "0"},
{"max_delta_step", "0"}
};
param.Init(args);
for (size_t i = 0; i < kNCols; ++i) {
param.monotone_constraints.emplace_back(0);
}
int max_bins = 4;
// Initialize GPUHistMakerDevice
auto page = BuildEllpackPage(kNRows, kNCols);
BatchParam batch_param{};
GPUHistMakerDevice<GradientPairPrecise>
maker(0, page.get(), kNRows, param, kNCols, kNCols, batch_param);
// Initialize GPUHistMakerDevice::node_sum_gradients
maker.node_sum_gradients = {{6.4f, 12.8f}};
// Initialize GPUHistMakerDevice::cut
auto cmat = GetHostCutMatrix();
// Copy cut matrix to device.
maker.ba.Allocate(0,
&(page->matrix.info.feature_segments), cmat.Ptrs().size(),
&(page->matrix.info.min_fvalue), cmat.MinValues().size(),
&(page->matrix.info.gidx_fvalue_map), 24,
&(maker.monotone_constraints), kNCols);
dh::CopyVectorToDeviceSpan(page->matrix.info.feature_segments, cmat.Ptrs());
dh::CopyVectorToDeviceSpan(page->matrix.info.gidx_fvalue_map, cmat.Values());
dh::CopyVectorToDeviceSpan(maker.monotone_constraints, param.monotone_constraints);
dh::CopyVectorToDeviceSpan(page->matrix.info.min_fvalue, cmat.MinValues());
// Initialize GPUHistMakerDevice::hist
maker.hist.Init(0, (max_bins - 1) * kNCols);
maker.hist.AllocateHistogram(0);
// Each row of hist_gpair represents gpairs for one feature.
// Each entry represents a bin.
std::vector<GradientPairPrecise> hist_gpair = GetHostHistGpair();
std::vector<bst_float> hist;
for (auto pair : hist_gpair) {
hist.push_back(pair.GetGrad());
hist.push_back(pair.GetHess());
}
ASSERT_EQ(maker.hist.Data().size(), hist.size());
thrust::copy(hist.begin(), hist.end(),
maker.hist.Data().begin());
maker.column_sampler.Init(kNCols,
param.colsample_bynode,
param.colsample_bylevel,
param.colsample_bytree,
false);
RegTree tree;
MetaInfo info;
info.num_row_ = kNRows;
info.num_col_ = kNCols;
maker.node_value_constraints.resize(1);
maker.node_value_constraints[0].lower_bound = -1.0;
maker.node_value_constraints[0].upper_bound = 1.0;
std::vector<DeviceSplitCandidate> res = maker.EvaluateSplits({0, 0 }, tree, kNCols);
ASSERT_EQ(res[0].findex, 7);
ASSERT_EQ(res[1].findex, 7);
ASSERT_NEAR(res[0].fvalue, 0.26, xgboost::kRtEps);
ASSERT_NEAR(res[1].fvalue, 0.26, xgboost::kRtEps);
}
void TestHistogramIndexImpl() {
// Test if the compressed histogram index matches when using a sparse
// dmatrix with and without using external memory
int constexpr kNRows = 1000, kNCols = 10;
// Build 2 matrices and build a histogram maker with that
tree::GPUHistMakerSpecialised<GradientPairPrecise> hist_maker, hist_maker_ext;
std::unique_ptr<DMatrix> hist_maker_dmat(
CreateSparsePageDMatrixWithRC(kNRows, kNCols, 0, true));
dmlc::TemporaryDirectory tempdir;
std::unique_ptr<DMatrix> hist_maker_ext_dmat(
CreateSparsePageDMatrixWithRC(kNRows, kNCols, 128UL, true, tempdir));
std::vector<std::pair<std::string, std::string>> training_params = {
{"max_depth", "10"},
{"max_leaves", "0"}
};
GenericParameter generic_param(CreateEmptyGenericParam(0));
hist_maker.Configure(training_params, &generic_param);
hist_maker.InitDataOnce(hist_maker_dmat.get());
hist_maker_ext.Configure(training_params, &generic_param);
hist_maker_ext.InitDataOnce(hist_maker_ext_dmat.get());
// Extract the device maker from the histogram makers and from that its compressed
// histogram index
const auto &maker = hist_maker.maker;
std::vector<common::CompressedByteT> h_gidx_buffer(maker->page->gidx_buffer.size());
dh::CopyDeviceSpanToVector(&h_gidx_buffer, maker->page->gidx_buffer);
const auto &maker_ext = hist_maker_ext.maker;
std::vector<common::CompressedByteT> h_gidx_buffer_ext(maker_ext->page->gidx_buffer.size());
dh::CopyDeviceSpanToVector(&h_gidx_buffer_ext, maker_ext->page->gidx_buffer);
ASSERT_EQ(maker->page->matrix.info.n_bins, maker_ext->page->matrix.info.n_bins);
ASSERT_EQ(maker->page->gidx_buffer.size(), maker_ext->page->gidx_buffer.size());
ASSERT_EQ(h_gidx_buffer, h_gidx_buffer_ext);
}
TEST(GpuHist, TestHistogramIndex) {
TestHistogramIndexImpl();
}
// gamma is an alias of min_split_loss
int32_t TestMinSplitLoss(DMatrix* dmat, float gamma, HostDeviceVector<GradientPair>* gpair) {
Args args {
{"max_depth", "1"},
{"max_leaves", "0"},
// Disable all other parameters.
{"colsample_bynode", "1"},
{"colsample_bylevel", "1"},
{"colsample_bytree", "1"},
{"min_child_weight", "0.01"},
{"reg_alpha", "0"},
{"reg_lambda", "0"},
{"max_delta_step", "0"},
// test gamma
{"gamma", std::to_string(gamma)}
};
tree::GPUHistMakerSpecialised<GradientPairPrecise> hist_maker;
GenericParameter generic_param(CreateEmptyGenericParam(0));
hist_maker.Configure(args, &generic_param);
RegTree tree;
hist_maker.Update(gpair, dmat, {&tree});
auto n_nodes = tree.NumExtraNodes();
return n_nodes;
}
HostDeviceVector<GradientPair> GenerateRandomGradients(const size_t n_rows) {
xgboost::SimpleLCG gen;
xgboost::SimpleRealUniformDistribution<bst_float> dist(0.0f, 1.0f);
std::vector<GradientPair> h_gpair(n_rows);
for (auto &gpair : h_gpair) {
bst_float grad = dist(&gen);
bst_float hess = dist(&gen);
gpair = GradientPair(grad, hess);
}
HostDeviceVector<GradientPair> gpair(h_gpair);
return gpair;
}
TEST(GpuHist, MinSplitLoss) {
constexpr size_t kRows = 32;
constexpr size_t kCols = 16;
constexpr float kSparsity = 0.6;
auto dmat = CreateDMatrix(kRows, kCols, kSparsity, 3);
auto gpair = GenerateRandomGradients(kRows);
{
int32_t n_nodes = TestMinSplitLoss((*dmat).get(), 0.01, &gpair);
// This is not strictly verified, meaning the numeber `2` is whatever GPU_Hist retured
// when writing this test, and only used for testing larger gamma (below) does prevent
// building tree.
ASSERT_EQ(n_nodes, 2);
}
{
int32_t n_nodes = TestMinSplitLoss((*dmat).get(), 100.0, &gpair);
// No new nodes with gamma == 100.
ASSERT_EQ(n_nodes, static_cast<decltype(n_nodes)>(0));
}
delete dmat;
}
void UpdateTree(HostDeviceVector<GradientPair>* gpair,
DMatrix* dmat,
size_t gpu_page_size,
RegTree* tree,
HostDeviceVector<bst_float>* preds) {
constexpr size_t kMaxBin = 2;
if (gpu_page_size > 0) {
// Loop over the batches and count the records
int64_t batch_count = 0;
int64_t row_count = 0;
for (const auto& batch : dmat->GetBatches<EllpackPage>({0, kMaxBin, 0, gpu_page_size})) {
EXPECT_LT(batch.Size(), dmat->Info().num_row_);
batch_count++;
row_count += batch.Size();
}
EXPECT_GE(batch_count, 2);
EXPECT_EQ(row_count, dmat->Info().num_row_);
}
Args args{
{"max_depth", "2"},
{"max_bin", std::to_string(kMaxBin)},
{"min_child_weight", "0.0"},
{"reg_alpha", "0"},
{"reg_lambda", "0"}
};
tree::GPUHistMakerSpecialised<GradientPairPrecise> hist_maker;
GenericParameter generic_param(CreateEmptyGenericParam(0));
generic_param.gpu_page_size = gpu_page_size;
hist_maker.Configure(args, &generic_param);
hist_maker.Update(gpair, dmat, {tree});
hist_maker.UpdatePredictionCache(dmat, preds);
}
TEST(GpuHist, ExternalMemory) {
constexpr size_t kRows = 6;
constexpr size_t kCols = 2;
constexpr size_t kPageSize = 1;
// Create an in-memory DMatrix.
std::unique_ptr<DMatrix> dmat(CreateSparsePageDMatrixWithRC(kRows, kCols, 0, true));
// Create a DMatrix with multiple batches.
dmlc::TemporaryDirectory tmpdir;
std::unique_ptr<DMatrix>
dmat_ext(CreateSparsePageDMatrixWithRC(kRows, kCols, kPageSize, true, tmpdir));
auto gpair = GenerateRandomGradients(kRows);
// Build a tree using the in-memory DMatrix.
RegTree tree;
HostDeviceVector<bst_float> preds(kRows, 0.0, 0);
UpdateTree(&gpair, dmat.get(), 0, &tree, &preds);
// Build another tree using multiple ELLPACK pages.
RegTree tree_ext;
HostDeviceVector<bst_float> preds_ext(kRows, 0.0, 0);
UpdateTree(&gpair, dmat_ext.get(), kPageSize, &tree_ext, &preds_ext);
// Make sure the predictions are the same.
auto preds_h = preds.ConstHostVector();
auto preds_ext_h = preds_ext.ConstHostVector();
for (int i = 0; i < kRows; i++) {
ASSERT_FLOAT_EQ(preds_h[i], preds_ext_h[i]);
}
}
} // namespace tree
} // namespace xgboost