The setup.py is rewritten. This new script uses only Python code and provide customized
implementation of setuptools commands. This way users can run most of setuptools commands
just like any other Python libraries.
* Remove setup_pip.py
* Remove soft links.
* Define customized commands.
* Remove shell script.
* Remove makefile script.
* Update the doc for building from source.
* Make pip install xgboost*.tar.gz work by fixing build-python.sh
* Simplify install doc
* Add test
* Install Miniconda for Linux target too
* Build XGBoost only once in sdist
* Try importing xgboost after installation
* Don't set PYTHONPATH env var for sdist test
* Simplify Scikit-Learn parameter management.
* Copy base class for removing duplicated parameter signatures.
* Set all parameters to None.
* Handle None in set_param.
* Extract the doc.
Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>
* Simplify DropTrees calling logic
* Add `training` parameter for prediction method.
* [Breaking]: Add `training` to C API.
* Change for R and Python custom objective.
* Correct comment.
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>
* Disable parameter validation for now.
Scikit-Learn passes all parameters down to XGBoost, whether they are used or
not.
* Add option `validate_parameters`.
* Remove `learning_rates`.
It's been deprecated since we have callback.
* Set `before_iteration` of `reset_learning_rate` to False to preserve
the initial learning rate, and comply to the term "reset".
Closes#4709.
* Tests for various `tree_method`.
This makes GPU Hist robust in distributed environment as some workers might not
be associated with any data in either training or evaluation.
* Disable rabit mock test for now: See #5012 .
* Disable dask-cudf test at prediction for now: See #5003
* Launch dask job for all workers despite they might not have any data.
* Check 0 rows in elementwise evaluation metrics.
Using AUC and AUC-PR still throws an error. See #4663 for a robust fix.
* Add tests for edge cases.
* Add `LaunchKernel` wrapper handling zero sized grid.
* Move some parts of allreducer into a cu file.
* Don't validate feature names when the booster is empty.
* Sync number of columns in DMatrix.
As num_feature is required to be the same across all workers in data split
mode.
* Filtering in dask interface now by default syncs all booster that's not
empty, instead of using rank 0.
* Fix Jenkins' GPU tests.
* Install dask-cuda from source in Jenkins' test.
Now all tests are actually running.
* Restore GPU Hist tree synchronization test.
* Check UUID of running devices.
The check is only performed on CUDA version >= 10.x, as 9.x doesn't have UUID field.
* Fix CMake policy and project variables.
Use xgboost_SOURCE_DIR uniformly, add policy for CMake >= 3.13.
* Fix copying data to CPU
* Fix race condition in cpu predictor.
* Fix duplicated DMatrix construction.
* Don't download extra nccl in CI script.
* Use `UpdateAllowUnknown' for non-model related parameter.
Model parameter can not pack an additional boolean value due to binary IO
format. This commit deals only with non-model related parameter configuration.
* Add tidy command line arg for use-dmlc-gtest.
* Don't set_params at the end of set_state.
* Also fix another issue found in dask prediction.
* Add note about prediction.
Don't support other prediction modes at the moment.
* Initial support for cudf integration.
* Add two C APIs for consuming data and metainfo.
* Add CopyFrom for SimpleCSRSource as a generic function to consume the data.
* Add FromDeviceColumnar for consuming device data.
* Add new MetaInfo::SetInfo for consuming label, weight etc.