Update GPU doc. (#4953)
This commit is contained in:
parent
7e72a12871
commit
185e3f1916
@ -46,6 +46,8 @@ Supported parameters
|
||||
+--------------------------------+--------------+
|
||||
| ``max_bin`` | |tick| |
|
||||
+--------------------------------+--------------+
|
||||
| ``gamma`` | |tick| |
|
||||
+--------------------------------+--------------+
|
||||
| ``gpu_id`` | |tick| |
|
||||
+--------------------------------+--------------+
|
||||
| ``n_gpus`` (deprecated) | |tick| |
|
||||
@ -75,9 +77,13 @@ The GPU algorithms currently work with CLI, Python and R packages. See :doc:`/bu
|
||||
:caption: Python example
|
||||
|
||||
param['gpu_id'] = 0
|
||||
param['max_bin'] = 16
|
||||
param['tree_method'] = 'gpu_hist'
|
||||
|
||||
.. code-block:: python
|
||||
:caption: With Scikit-Learn interface
|
||||
|
||||
XGBRegressor(tree_method='gpu_hist', gpu_id=0)
|
||||
|
||||
|
||||
Single Node Multi-GPU
|
||||
=====================
|
||||
@ -85,9 +91,10 @@ Single Node Multi-GPU
|
||||
|
||||
Multi-node Multi-GPU Training
|
||||
=============================
|
||||
XGBoost supports fully distributed GPU training using `Dask
|
||||
<https://dask.org/>`_. See Python documentation :ref:`dask_api` and worked examples `here
|
||||
<https://github.com/dmlc/xgboost/tree/master/demo/dask>`_.
|
||||
XGBoost supports fully distributed GPU training using `Dask <https://dask.org/>`_. For
|
||||
getting started see our tutorial :doc:`/tutorials/dask` and worked examples `here
|
||||
<https://github.com/dmlc/xgboost/tree/master/demo/dask>`_, also Python documentation
|
||||
:ref:`dask_api` for complete reference.
|
||||
|
||||
|
||||
Objective functions
|
||||
|
||||
@ -101,8 +101,8 @@ class XGBModel(XGBModelBase):
|
||||
|
||||
.. note::
|
||||
|
||||
Using gblinear booster with shotgun updater is
|
||||
nondeterministic as it uses Hogwild algorithm.
|
||||
Using gblinear booster with shotgun updater is nondeterministic as
|
||||
it uses Hogwild algorithm.
|
||||
|
||||
missing : float, optional
|
||||
Value in the data which needs to be present as a missing value. If
|
||||
@ -960,8 +960,10 @@ class XGBRanker(XGBModel):
|
||||
random_state : int
|
||||
Random number seed.
|
||||
|
||||
.. note:: Using gblinear booster with shotgun updater is
|
||||
nondeterministic as it uses Hogwild algorithm.
|
||||
.. note::
|
||||
|
||||
Using gblinear booster with shotgun updater is nondeterministic as
|
||||
it uses Hogwild algorithm.
|
||||
|
||||
missing : float, optional
|
||||
Value in the data which needs to be present as a missing value. If
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user