diff --git a/doc/gpu/index.rst b/doc/gpu/index.rst
index 5c335e66a..1f8d2d9e2 100644
--- a/doc/gpu/index.rst
+++ b/doc/gpu/index.rst
@@ -46,6 +46,8 @@ Supported parameters
+--------------------------------+--------------+
| ``max_bin`` | |tick| |
+--------------------------------+--------------+
+| ``gamma`` | |tick| |
++--------------------------------+--------------+
| ``gpu_id`` | |tick| |
+--------------------------------+--------------+
| ``n_gpus`` (deprecated) | |tick| |
@@ -75,9 +77,13 @@ The GPU algorithms currently work with CLI, Python and R packages. See :doc:`/bu
:caption: Python example
param['gpu_id'] = 0
- param['max_bin'] = 16
param['tree_method'] = 'gpu_hist'
+.. code-block:: python
+ :caption: With Scikit-Learn interface
+
+ XGBRegressor(tree_method='gpu_hist', gpu_id=0)
+
Single Node Multi-GPU
=====================
@@ -85,9 +91,10 @@ Single Node Multi-GPU
Multi-node Multi-GPU Training
=============================
-XGBoost supports fully distributed GPU training using `Dask
-`_. See Python documentation :ref:`dask_api` and worked examples `here
-`_.
+XGBoost supports fully distributed GPU training using `Dask `_. For
+getting started see our tutorial :doc:`/tutorials/dask` and worked examples `here
+`_, also Python documentation
+:ref:`dask_api` for complete reference.
Objective functions
diff --git a/python-package/xgboost/sklearn.py b/python-package/xgboost/sklearn.py
index 74d52393e..66efb01fa 100644
--- a/python-package/xgboost/sklearn.py
+++ b/python-package/xgboost/sklearn.py
@@ -101,8 +101,8 @@ class XGBModel(XGBModelBase):
.. note::
- Using gblinear booster with shotgun updater is
- nondeterministic as it uses Hogwild algorithm.
+ Using gblinear booster with shotgun updater is nondeterministic as
+ it uses Hogwild algorithm.
missing : float, optional
Value in the data which needs to be present as a missing value. If
@@ -960,8 +960,10 @@ class XGBRanker(XGBModel):
random_state : int
Random number seed.
- .. note:: Using gblinear booster with shotgun updater is
- nondeterministic as it uses Hogwild algorithm.
+ .. note::
+
+ Using gblinear booster with shotgun updater is nondeterministic as
+ it uses Hogwild algorithm.
missing : float, optional
Value in the data which needs to be present as a missing value. If