59 Commits

Author SHA1 Message Date
Jiaming Yuan
ace7713201
[backport] Fix default metric configuration. (#9575) (#9590) 2023-09-18 23:40:43 +08:00
Rong Ou
bde1ebc209
Switch back to the GPUIDX macro (#9438) 2023-08-04 15:14:31 +08:00
Rong Ou
c2b85ab68a
Clean up MGPU C++ tests (#9430) 2023-08-02 14:31:18 +08:00
Jiaming Yuan
04aff3af8e
Define the new device parameter. (#9362) 2023-07-13 19:30:25 +08:00
Jiaming Yuan
152e2fb072
Unify test helpers for creating ctx. (#9274) 2023-06-10 03:35:22 +08:00
Jiaming Yuan
e206b899ef
Rework MAP and Pairwise for LTR. (#9075) 2023-04-28 02:39:12 +08:00
Jiaming Yuan
ef13dd31b1
Rework the NDCG objective. (#9015) 2023-04-18 21:16:06 +08:00
Jiaming Yuan
d062a9e009
Define pair generation strategies for LTR. (#8984) 2023-03-30 12:00:35 +08:00
Jiaming Yuan
f236640427
Support F order for the tensor type. (#8872)
- Add F order support for tensor and view.
- Use parameter pack for automatic type cast. (avoid excessive static cast for shape).
2023-03-08 03:27:49 +08:00
Jiaming Yuan
228a46e8ad
Support learning rate for zero-hessian objectives. (#8866) 2023-03-06 20:33:28 +08:00
Jiaming Yuan
4d665b3fb0
Restore clang tidy test. (#8861) 2023-03-03 13:47:04 -08:00
Jiaming Yuan
cce4af4acf
Initial support for quantile loss. (#8750)
- Add support for Python.
- Add objective.
2023-02-16 02:30:18 +08:00
Jiaming Yuan
cfa994d57f
Multi-target support for L1 error. (#8652)
- Add matrix support to the median function.
- Iterate through each target for quantile computation.
2023-01-11 05:51:14 +08:00
Jiaming Yuan
3e26107a9c
Rename and extract Context. (#8528)
* Rename `GenericParameter` to `Context`.
* Rename header file to reflect the change.
* Rename all references.
2022-12-07 04:58:54 +08:00
Jiaming Yuan
1a33b50a0d
Fix compiler warnings. (#7974)
- Remove unused parameters. There are still many warnings that are not yet
addressed. Currently, the warnings in dmlc-core dominate the error log.
- Remove `distributed` parameter from metric.
- Fixes some warnings about signed comparison.
2022-06-06 22:56:25 +08:00
Jiaming Yuan
fdf533f2b9
[POC] Experimental support for l1 error. (#7812)
Support adaptive tree, a feature supported by both sklearn and lightgbm.  The tree leaf is recomputed based on residue of labels and predictions after construction.

For l1 error, the optimal value is the median (50 percentile).

This is marked as experimental support for the following reasons:
- The value is not well defined for distributed training, where we might have empty leaves for local workers. Right now I just use the original leaf value for computing the average with other workers, which might cause significant errors.
- Some follow-ups are required, for exact, pruner, and optimization for quantile function. Also, we need to calculate the initial estimation.
2022-04-26 21:41:55 +08:00
Jiaming Yuan
98d6faefd6
Implement slope for Pseduo-Huber. (#7727)
* Add objective and metric.
* Some refactoring for CPU/GPU dispatching using linalg module.
2022-03-14 21:42:38 +08:00
Jiaming Yuan
5b1161bb64
Convert labels into tensor. (#7456)
* Add a new ctor to tensor for `initilizer_list`.
* Change labels from host device vector to tensor.
* Rename the field from `labels_` to `labels` since it's a public member.
2021-12-17 00:58:35 +08:00
Jiaming Yuan
7a1d67f9cb
[breaking] Use integer atomic for GPU histogram. (#7180)
On GPU we use rouding factor to truncate the gradient for deterministic results. This PR changes the gradient representation to fixed point number with exponent aligned with rounding factor.

    [breaking] Drop non-deterministic histogram.
    Use fixed point for shared memory.

This PR is to improve the performance of GPU Hist. 

Co-authored-by: Andy Adinets <aadinets@nvidia.com>
2021-08-28 05:17:05 +08:00
Jiaming Yuan
1d90577800
Verify strictly positive labels for gamma regression. (#6778)
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2021-03-25 11:46:52 +08:00
Jiaming Yuan
a9ec0ea6da
Align device id in predict transform with predictor. (#6662) 2021-02-02 08:33:29 +08:00
Philip Hyunsu Cho
71b0528a2f
GPU implementation of AFT survival objective and metric (#5714)
* Add interval accuracy

* De-virtualize AFT functions

* Lint

* Refactor AFT metric using GPU-CPU reducer

* Fix R build

* Fix build on Windows

* Fix copyright header

* Clang-tidy

* Fix crashing demo

* Fix typos in comment; explain GPU ID

* Remove unnecessary #include

* Add C++ test for interval accuracy

* Fix a bug in accuracy metric: use log pred

* Refactor AFT objective using GPU-CPU Transform

* Lint

* Fix lint

* Use Ninja to speed up build

* Use time, not /usr/bin/time

* Add cpu_build worker class, with concurrency = 1

* Use concurrency = 1 only for CUDA build

* concurrency = 1 for clang-tidy

* Address reviewer's feedback

* Update link to AFT paper
2020-07-17 01:18:13 -07:00
LionOrCatThatIsTheQuestion
83981a9ce3
Pseudo-huber loss metric added (#5647)
- Add pseudo huber loss objective.
- Add pseudo huber loss metric.

Co-authored-by: Reetz <s02reetz@iavgroup.local>
2020-05-18 21:08:07 +08:00
Jiaming Yuan
6671b42dd4
Use ellpack for prediction only when sparsepage doesn't exist. (#5504) 2020-04-10 12:15:46 +08:00
Philip Hyunsu Cho
5fc5ec539d
Implement robust regularization in 'survival:aft' objective (#5473)
* Robust regularization of AFT gradient and hessian

* Fix AFT doc; expose it to tutorial TOC

* Apply robust regularization to uncensored case too

* Revise unit test slightly

* Fix lint

* Update test_survival.py

* Use GradientPairPrecise

* Remove unused variables
2020-04-04 12:21:24 -07:00
Jiaming Yuan
4942da64ae
Refactor tests with data generator. (#5439) 2020-03-27 06:44:44 +08:00
Avinash Barnwal
dcf439932a
Add Accelerated Failure Time loss for survival analysis task (#4763)
* [WIP] Add lower and upper bounds on the label for survival analysis

* Update test MetaInfo.SaveLoadBinary to account for extra two fields

* Don't clear qids_ for version 2 of MetaInfo

* Add SetInfo() and GetInfo() method for lower and upper bounds

* changes to aft

* Add parameter class for AFT; use enum's to represent distribution and event type

* Add AFT metric

* changes to neg grad to grad

* changes to binomial loss

* changes to overflow

* changes to eps

* changes to code refactoring

* changes to code refactoring

* changes to code refactoring

* Re-factor survival analysis

* Remove aft namespace

* Move function bodies out of AFTNormal and AFTLogistic, to reduce clutter

* Move function bodies out of AFTLoss, to reduce clutter

* Use smart pointer to store AFTDistribution and AFTLoss

* Rename AFTNoiseDistribution enum to AFTDistributionType for clarity

The enum class was not a distribution itself but a distribution type

* Add AFTDistribution::Create() method for convenience

* changes to extreme distribution

* changes to extreme distribution

* changes to extreme

* changes to extreme distribution

* changes to left censored

* deleted cout

* changes to x,mu and sd and code refactoring

* changes to print

* changes to hessian formula in censored and uncensored

* changes to variable names and pow

* changes to Logistic Pdf

* changes to parameter

* Expose lower and upper bound labels to R package

* Use example weights; normalize log likelihood metric

* changes to CHECK

* changes to logistic hessian to standard formula

* changes to logistic formula

* Comply with coding style guideline

* Revert back Rabit submodule

* Revert dmlc-core submodule

* Comply with coding style guideline (clang-tidy)

* Fix an error in AFTLoss::Gradient()

* Add missing files to amalgamation

* Address @RAMitchell's comment: minimize future change in MetaInfo interface

* Fix lint

* Fix compilation error on 32-bit target, when size_t == bst_uint

* Allocate sufficient memory to hold extra label info

* Use OpenMP to speed up

* Fix compilation on Windows

* Address reviewer's feedback

* Add unit tests for probability distributions

* Make Metric subclass of Configurable

* Address reviewer's feedback: Configure() AFT metric

* Add a dummy test for AFT metric configuration

* Complete AFT configuration test; remove debugging print

* Rename AFT parameters

* Clarify test comment

* Add a dummy test for AFT loss for uncensored case

* Fix a bug in AFT loss for uncensored labels

* Complete unit test for AFT loss metric

* Simplify unit tests for AFT metric

* Add unit test to verify aggregate output from AFT metric

* Use EXPECT_* instead of ASSERT_*, so that we run all unit tests

* Use aft_loss_param when serializing AFTObj

This is to be consistent with AFT metric

* Add unit tests for AFT Objective

* Fix OpenMP bug; clarify semantics for shared variables used in OpenMP loops

* Add comments

* Remove AFT prefix from probability distribution; put probability distribution in separate source file

* Add comments

* Define kPI and kEulerMascheroni in probability_distribution.h

* Add probability_distribution.cc to amalgamation

* Remove unnecessary diff

* Address reviewer's feedback: define variables where they're used

* Eliminate all INFs and NANs from AFT loss and gradient

* Add demo

* Add tutorial

* Fix lint

* Use 'survival:aft' to be consistent with 'survival:cox'

* Move sample data to demo/data

* Add visual demo with 1D toy data

* Add Python tests

Co-authored-by: Philip Cho <chohyu01@cs.washington.edu>
2020-03-25 13:52:51 -07:00
sriramch
b81f8cbbc0
Move segment sorter to common (#5378)
- move segment sorter to common
- this is the first of a handful of pr's that splits the larger pr #5326
- it moves this facility to common (from ranking objective class), so that it can be
    used for metric computation
- it also wraps all the bald device pointers into span.
2020-02-29 15:42:07 +08:00
Jiaming Yuan
3eb1279bbf
Config for linear updaters. (#5222) 2020-01-25 11:26:46 +08:00
sriramch
ee81ba8e1f implementation of map ranking algorithm on gpu (#5129)
* - implementation of map ranking algorithm
  - also effected necessary suggestions mentioned in the earlier ranking pr's
  - made some performance improvements to the ndcg algo as well
2019-12-27 12:05:37 +13:00
Jiaming Yuan
c8bdb652c4
Add check for length of weights. (#4872) 2019-12-21 11:30:58 +08:00
sriramch
2abe69d774 - ndcg ltr implementation on gpu (#5004)
* - ndcg ltr implementation on gpu
  - this is a follow-up to the pairwise ltr implementation
2019-11-13 11:21:04 +13:00
Jiaming Yuan
ac457c56a2
Use `UpdateAllowUnknown' for non-model related parameter. (#4961)
* Use `UpdateAllowUnknown' for non-model related parameter.

Model parameter can not pack an additional boolean value due to binary IO
format.  This commit deals only with non-model related parameter configuration.

* Add tidy command line arg for use-dmlc-gtest.
2019-10-23 05:50:12 -04:00
sriramch
310fe60b35 Pairwise ranking objective implementation on gpu (#4873)
* - pairwise ranking objective implementation on gpu
   - there are couple of more algorithms (ndcg and map) for which support will be added
     as follow-up pr's
   - with no label groups defined, get gradient is 90x faster on gpu (120m instance
     mortgage dataset)
   - it can perform by an order of magnitude faster with ~ 10 groups (and adequate cores
     for the cpu implementation)

* Add JSON config to rank obj.
2019-10-22 23:40:07 -04:00
Jiaming Yuan
ae536756ae
Add Model and Configurable interface. (#4945)
* Apply Configurable to objective functions.
* Apply Model to Learner and Regtree, gbm.
* Add Load/SaveConfig to objs.
* Refactor obj tests to use smart pointer.
* Dummy methods for Save/Load Model.
2019-10-18 01:56:02 -04:00
Rong Ou
38ab79f889 Make HostDeviceVector single gpu only (#4773)
* Make HostDeviceVector single gpu only
2019-08-26 09:51:13 +12:00
Jiaming Yuan
f0064c07ab
Refactor configuration [Part II]. (#4577)
* Refactor configuration [Part II].

* General changes:
** Remove `Init` methods to avoid ambiguity.
** Remove `Configure(std::map<>)` to avoid redundant copying and prepare for
   parameter validation. (`std::vector` is returned from `InitAllowUnknown`).
** Add name to tree updaters for easier debugging.

* Learner changes:
** Make `LearnerImpl` the only source of configuration.

    All configurations are stored and carried out by `LearnerImpl::Configure()`.

** Remove booster in C API.

    Originally kept for "compatibility reason", but did not state why.  So here
    we just remove it.

** Add a `metric_names_` field in `LearnerImpl`.
** Remove `LazyInit`.  Configuration will always be lazy.
** Run `Configure` before every iteration.

* Predictor changes:
** Allocate both cpu and gpu predictor.
** Remove cpu_predictor from gpu_predictor.

    `GBTree` is now used to dispatch the predictor.

** Remove some GPU Predictor tests.

* IO

No IO changes.  The binary model format stability is tested by comparing
hashing value of save models between two commits
2019-07-20 08:34:56 -04:00
Jiaming Yuan
2f1319f273
Add rmsle metric and reg:squaredlogerror objective (#4541) 2019-06-11 05:48:27 +08:00
Jiaming Yuan
da21ac0cc2
Fix tweedie metric string. (#4543) 2019-06-09 09:52:29 +08:00
Jiaming Yuan
c589eff941
De-duplicate GPU parameters. (#4454)
* Only define `gpu_id` and `n_gpus` in `LearnerTrainParam`
* Pass LearnerTrainParam through XGBoost vid factory method.
* Disable all GPU usage when GPU related parameters are not specified (fixes XGBoost choosing GPU over aggressively).
* Test learner train param io.
* Fix gpu pickling.
2019-05-29 11:55:57 +08:00
Jiaming Yuan
29a1356669
Deprecate reg:linear' in favor of reg:squarederror'. (#4267)
* Deprecate `reg:linear' in favor of `reg:squarederror'.
* Replace the use of `reg:linear'.
* Replace the use of `silent`.
2019-03-17 17:55:04 +08:00
Jiaming Yuan
7b9043cf71
Fix clang-tidy warnings. (#4149)
* Upgrade gtest for clang-tidy.
* Use CMake to install GTest instead of mv.
* Don't enforce clang-tidy to return 0 due to errors in thrust.
* Add a small test for tidy itself.

* Reformat.
2019-03-13 02:25:51 +08:00
Philip Hyunsu Cho
2b045aa805
Make C++ unit tests run and pass on Windows (#3869)
* Make C++ unit tests run and pass on Windows

* Fix logic for external memory. The letter ':' is part of drive letter,
so remove the drive letter before splitting on ':'.
* Cosmetic syntax changes to keep MSVC happy.

* Fix lint

* Add Windows guard
2018-11-06 17:17:24 -08:00
trivialfis
d594b11f35 Implement transform to reduce CPU/GPU code duplication. (#3643)
* Implement Transform class.
* Add tests for softmax.
* Use Transform in regression, softmax and hinge objectives, except for Cox.
* Mark old gpu objective functions deprecated.
* static_assert for softmax.
* Split up multi-gpu tests.
2018-10-02 15:06:21 +13:00
trivialfis
cf2d86a4f6 Add travis sanitizers tests. (#3557)
* Add travis sanitizers tests.

* Add gcc-7 in Travis.
* Add SANITIZER_PATH for CMake.
* Enable sanitizer tests in Travis.

* Fix memory leaks in tests.

* Fix all memory leaks reported by Address Sanitizer.
* tests/cpp/helpers.h/CreateDMatrix now returns raw pointer.
2018-08-19 16:40:30 +12:00
Henry Gouk
69454d9487 Implementation of hinge loss for binary classification (#3477) 2018-08-07 10:06:42 +12:00
pdesahb
12e34f32e2 Fix tweedie handling of base_score (#3295)
* fix tweedie margin calculations

* add entry to contributors
2018-06-28 15:43:05 +00:00
ngoyal2707
5cd851ccef added code for instance based weighing for rank objectives (#3379)
* added code for instance based weighing for rank objectives

* Fix lint
2018-06-22 15:10:59 -07:00
Rory Mitchell
ccf80703ef
Clang-tidy static analysis (#3222)
* Clang-tidy static analysis

* Modernise checks

* Google coding standard checks

* Identifier renaming according to Google style
2018-04-19 18:57:13 +12:00
Andrew V. Adinetz
d5992dd881 Replaced std::vector-based interfaces with HostDeviceVector-based interfaces. (#3116)
* Replaced std::vector-based interfaces with HostDeviceVector-based interfaces.

- replacement was performed in the learner, boosters, predictors,
  updaters, and objective functions
- only interfaces used in training were replaced;
  interfaces like PredictInstance() still use std::vector
- refactoring necessary for replacement of interfaces was also performed,
  such as using HostDeviceVector in prediction cache

* HostDeviceVector-based interfaces for custom objective function example plugin.
2018-02-28 13:00:04 +13:00