* All Linux tests are now in Jenkins CI
* Tests are now de-coupled from builds. We can now build XGBoost with one version of CUDA/JDK and test it with another version of CUDA/JDK
* Builds (compilation) are significantly faster because 1) They use C5 instances with faster CPU cores; and 2) build environment setup is cached using Docker containers
* Fix#3342 and h2oai/h2o4gpu#625: Save predictor parameters in model file
This allows pickled models to retain predictor attributes, such as
'predictor' (whether to use CPU or GPU) and 'n_gpu' (number of GPUs
to use). Related: h2oai/h2o4gpu#625Closes#3342.
TODO. Write a test.
* Fix lint
* Do not load GPU predictor into CPU-only XGBoost
* Add a test for pickling GPU predictors
* Make sample data big enough to pass multi GPU test
* Update test_gpu_predictor.cu
* Clean up logic for converting tree_method to updater sequence
* Use C++11 enum class for extra safety
Compiler will give warnings if switch statements don't handle all
possible values of C++11 enum class.
Also allow enum class to be used as DMLC parameter.
* Fix compiler error + lint
* Address reviewer comment
* Better docstring for DECLARE_FIELD_ENUM_CLASS
* Fix lint
* Add C++ test to see if tree_method is recognized
* Fix clang-tidy error
* Add test_learner.h to R package
* Update comments
* Fix lint error
* For CRAN submission, remove all #pragma's that suppress compiler warnings
A few headers in dmlc-core contain #pragma's that disable compiler warnings,
which is against the CRAN submission policy. Fix the problem by removing
the offending #pragma's as part of the command `make Rbuild`.
This addresses issue #3322.
* Fix script to improve Cygwin/MSYS compatibility
We need this to pass rmingw CI test
* Remove remove_warning_suppression_pragma.sh from packaged tarball
* Now `make pippack` works without any manual action: it will produce
xgboost-[version].tar.gz, which one can use by typing
`pip3 install xgboost-[version].tar.gz`.
* Detect OpenMP-capable compilers (clang, gcc-5, gcc-7) on MacOS
* Removal of redundant code/files.
* Removal of exact namespace in GPU plugin
* Revert double precision histograms to single precision for performance on Maxwell/Kepler
* repared serialization after update process; fixes#2545
* non-stratified folds in python could omit some data instances
* Makefile: fixes for older makes on windows; clean R-package too
* make cub to be a shallow submodule
* improve $(MAKE) recovery
* for MinGW, drop the 'lib' prefix from shared library name
* fix defines for 'g++ 4.8 or higher' to include g++ >= 5
* fix compile warnings
* [Appveyor] add MinGW with python; remove redundant jobs
* [Appveyor] also do python build for one of msvc jobs
* Fixed DLL name on Windows in ``xgboost.libpath``
* Added support for OS X to ``xgboost.libpath``
* Use .dylib for shared library on OS X
This does not affect the JNI library, because it is not trully
cross-platform in the Makefile-build anyway.
* Support for builing gpu-plugins to specific GPU architectures
1. Option GPU_COMPUTE_VER exposed from both Makefile and CMakeLists.txt
2. updater_gpu documentation updated accordingly
* Re-introduced GPU_COMPUTE_VER option in the cmake flow.
This seems to fix the compile-time, rdc=true and copy-constructor related
errors seen and discussed in PR #2390.
* Integrating a faster version of grow_gpu plugin
1. Removed the older files to reduce duplication
2. Moved all of the grow_gpu files under 'exact' folder
3. All of them are inside 'exact' namespace to avoid any conflicts
4. Fixed a bug in benchmark.py while running only 'grow_gpu' plugin
5. Added cub and googletest submodules to ease integration and unit-testing
6. Updates to CMakeLists.txt to directly build cuda objects into libxgboost
* Added support for building gpu plugins through make flow
1. updated makefile and config.mk to add right targets
2. added unit-tests for gpu exact plugin code
* 1. Added support for building gpu plugin using 'make' flow as well
2. Updated instructions for building and testing gpu plugin
* Fix travis-ci errors for PR#2360
1. lint errors on unit-tests
2. removed googletest, instead depended upon dmlc-core provide gtest cache
* Some more fixes to travis-ci lint failures PR#2360
* Added Rory's copyrights to the files containing code from both.
* updated copyright statement as per Rory's request
* moved the static datasets into a script to generate them at runtime
* 1. memory usage print when silent=0
2. tests/ and test/ folder organization
3. removal of the dependency of googletest for just building xgboost
4. coding style updates for .cuh as well
* Fixes for compilation warnings
* add cuda object files as well when JVM_BINDINGS=ON
This commit proposes a simpler single compiler specification for OSX and *nix. It also let's people override the setting on both systems, not just *nix.
Update the code coverage of the project on codecov for easy viewing.
Also the gcov on travis uses a different version which cannot
find the directory of the given files, and it needs to be specified
in the -o flag. Hence now we loop over the list of files and
run them independently.
* Changes for Mingw64 compilation to ensure long is a consistent size.
Mainly impacts the Java API which would not compile, but there may be
silent errors on Windows with large datasets before this patch (as long
is 32-bits when compiled with mingw64 even in 64-bit mode).
* Adding ifdefs to ensure it still compiles on MacOS
* Makefile and create_jni.bat changes for Windows.
* Switching XGDMatrixCreateFromCSREx JNI call to use size_t cast
* Fixing lint error, adding profile switching to jvm-packages build to make create-jni.bat get called, adding myself to Contributors.Md
* Fixed OpenMP installation on MacOSX with gcc-6
- Modified makefile from gcc-5 to gcc-6
- Removed deprecated install instructions from doc (gcc-5 was automatically forced if available in makefile on OSX)
* Fixed OpenMP installation on MacOSX with gcc-6
- Modified makefile from gcc-5 to gcc-6
- Removed deprecated install instructions from doc (gcc-5 was automatically forced if available in makefile on OSX)
* force gcc-5 or clang-omp for Mac OS, prepare for pip pack
* add sklearn dep, make -j4
* finalize PyPI submission
* revert to Xcode clang for passing build #1468
* force to clang, try to solve cmake travis error
* remove sklearn dependency