Support adaptive tree, a feature supported by both sklearn and lightgbm. The tree leaf is recomputed based on residue of labels and predictions after construction.
For l1 error, the optimal value is the median (50 percentile).
This is marked as experimental support for the following reasons:
- The value is not well defined for distributed training, where we might have empty leaves for local workers. Right now I just use the original leaf value for computing the average with other workers, which might cause significant errors.
- Some follow-ups are required, for exact, pruner, and optimization for quantile function. Also, we need to calculate the initial estimation.
* Add num target model parameter, which is configured from input labels.
* Change elementwise metric and indexing for weights.
* Add demo.
* Add tests.
* Pass pointer to model parameters.
This PR de-duplicates most of the model parameters except the one in
`tree_model.h`. One difficulty is `base_score` is a model property but can be
changed at runtime by objective function. Hence when performing model IO, we
need to save the one provided by users, instead of the one transformed by
objective. Here we created an immutable version of `LearnerModelParam` that
represents the value of model parameter after configuration.
* Apply Configurable to objective functions.
* Apply Model to Learner and Regtree, gbm.
* Add Load/SaveConfig to objs.
* Refactor obj tests to use smart pointer.
* Dummy methods for Save/Load Model.
* Move get transpose into cc.
* Clean up headers in host device vector, remove thrust dependency.
* Move span and host device vector into public.
* Install c++ headers.
* Short notes for c and c++.
Co-Authored-By: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
* Refactor configuration [Part II].
* General changes:
** Remove `Init` methods to avoid ambiguity.
** Remove `Configure(std::map<>)` to avoid redundant copying and prepare for
parameter validation. (`std::vector` is returned from `InitAllowUnknown`).
** Add name to tree updaters for easier debugging.
* Learner changes:
** Make `LearnerImpl` the only source of configuration.
All configurations are stored and carried out by `LearnerImpl::Configure()`.
** Remove booster in C API.
Originally kept for "compatibility reason", but did not state why. So here
we just remove it.
** Add a `metric_names_` field in `LearnerImpl`.
** Remove `LazyInit`. Configuration will always be lazy.
** Run `Configure` before every iteration.
* Predictor changes:
** Allocate both cpu and gpu predictor.
** Remove cpu_predictor from gpu_predictor.
`GBTree` is now used to dispatch the predictor.
** Remove some GPU Predictor tests.
* IO
No IO changes. The binary model format stability is tested by comparing
hashing value of save models between two commits
* Only define `gpu_id` and `n_gpus` in `LearnerTrainParam`
* Pass LearnerTrainParam through XGBoost vid factory method.
* Disable all GPU usage when GPU related parameters are not specified (fixes XGBoost choosing GPU over aggressively).
* Test learner train param io.
* Fix gpu pickling.
* Replaced std::vector with HostDeviceVector in MetaInfo and SparsePage.
- added distributions to HostDeviceVector
- using HostDeviceVector for labels, weights and base margings in MetaInfo
- using HostDeviceVector for offset and data in SparsePage
- other necessary refactoring
* Added const version of HostDeviceVector API calls.
- const versions added to calls that can trigger data transfers, e.g. DevicePointer()
- updated the code that uses HostDeviceVector
- objective functions now accept const HostDeviceVector<bst_float>& for predictions
* Updated src/linear/updater_gpu_coordinate.cu.
* Added read-only state for HostDeviceVector sync.
- this means no copies are performed if both host and devices access
the HostDeviceVector read-only
* Fixed linter and test errors.
- updated the lz4 plugin
- added ConstDeviceSpan to HostDeviceVector
- using device % dh::NVisibleDevices() for the physical device number,
e.g. in calls to cudaSetDevice()
* Fixed explicit template instantiation errors for HostDeviceVector.
- replaced HostDeviceVector<unsigned int> with HostDeviceVector<int>
* Fixed HostDeviceVector tests that require multiple GPUs.
- added a mock set device handler; when set, it is called instead of cudaSetDevice()
* Replaced std::vector-based interfaces with HostDeviceVector-based interfaces.
- replacement was performed in the learner, boosters, predictors,
updaters, and objective functions
- only interfaces used in training were replaced;
interfaces like PredictInstance() still use std::vector
- refactoring necessary for replacement of interfaces was also performed,
such as using HostDeviceVector in prediction cache
* HostDeviceVector-based interfaces for custom objective function example plugin.
* Added GPU objective function and no-copy interface.
- xgboost::HostDeviceVector<T> syncs automatically between host and device
- no-copy interfaces have been added
- default implementations just sync the data to host
and call the implementations with std::vector
- GPU objective function, predictor, histogram updater process data
directly on GPU
* Fix various typos
* Add override to functions that are overridden
gcc gives warnings about functions that are being overridden by not
being marked as oveirridden. This fixes it.
* Use bst_float consistently
Use bst_float for all the variables that involve weight,
leaf value, gradient, hessian, gain, loss_chg, predictions,
base_margin, feature values.
In some cases, when due to additions and so on the value can
take a larger value, double is used.
This ensures that type conversions are minimal and reduces loss of
precision.