- Expose `NumBatches` in `DMatrix`.
- Small cleanup for removing legacy CUDA stream and ~force CUDA context initialization~.
- Purge old external memory data generation code.
- A new DMatrix type.
- Extract common code into a new QDM base class.
Not yet working:
- Not exposed to the interface yet, will wait for the GPU implementation.
- ~No meta info yet, still working on the source.~
- Exporting data to CSR is not supported yet.
- Support resource view in ellpack.
- Define the CUDA version of MMAP resource.
- Define the CUDA version of malloc resource.
- Refactor cuda runtime API wrappers, and add memory access related wrappers.
- gather windows macros into a single header.
This PR replaces the original RABIT implementation with a new one, which has already been partially merged into XGBoost. The new one features:
- Federated learning for both CPU and GPU.
- NCCL.
- More data types.
- A unified interface for all the underlying implementations.
- Improved timeout handling for both tracker and workers.
- Exhausted tests with metrics (fixed a couple of bugs along the way).
- A reusable tracker for Python and JVM packages.
- Use the array interface internally.
- Deprecate `XGDMatrixSetDenseInfo`.
- Deprecate `XGDMatrixSetUIntInfo`.
- Move the handling of `DataType` into the deprecated C function.
---------
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
- Use std::uint64_t instead of size_t to avoid implementation-defined type.
- Rename to bst_idx_t, to account for other types of indexing.
- Small cleanup to the base header.
- Use the `linalg::Matrix` for storing gradients.
- New API for the custom objective.
- Custom objective for multi-class/multi-target is now required to return the correct shape.
- Custom objective for Python can accept arrays with any strides. (row-major, column-major)
- A `DeviceOrd` struct is implemented to indicate the device. It will eventually replace the `gpu_id` parameter.
- The `predictor` parameter is removed.
- Fallback to `DMatrix` when `inplace_predict` is not available.
- The heuristic for choosing a predictor is only used during training.
- Pass context from booster to DMatrix.
- Use context instead of integer for `n_threads`.
- Check the consistency configuration for `max_bin`.
- Test for all combinations of initialization options.
Added some more tests for the learner and fit_stump, for both column-wise distributed learning and vertical federated learning.
Also moved the `IsRowSplit` and `IsColumnSplit` methods from the `DMatrix` to the `MetaInfo` since in some places we only have access to the `MetaInfo`. Added a new convenience method `IsVerticalFederatedLearning`.
Some refactoring of the testing fixtures.
- Fix prediction range.
- Support prediction cache in mt-hist.
- Support model slicing.
- Make the booster a Python iterable by defining `__iter__`.
- Cleanup removed/deprecated parameters.
- A new field in the output model `iteration_indptr` for pointing to the ranges of trees for each iteration.
* Implement multi-target for hist.
- Add new hist tree builder.
- Move data fetchers for tests.
- Dispatch function calls in gbm base on the tree type.
* Prepare for improving Windows networking compatibility.
* Include dmlc filesystem indirectly as dmlc/filesystem.h includes windows.h, which
conflicts with winsock2.h
* Define `NOMINMAX` conditionally.
* Link the winsock library when mysys32 is used.
* Add config file for read the doc.
- Remove unused parameters. There are still many warnings that are not yet
addressed. Currently, the warnings in dmlc-core dominate the error log.
- Remove `distributed` parameter from metric.
- Fixes some warnings about signed comparison.
This is the one last PR for removing omp global variable.
* Add context object to the `DMatrix`. This bridges `DMatrix` with https://github.com/dmlc/xgboost/issues/7308 .
* Require context to be available at the construction time of booster.
* Add `n_threads` support for R csc DMatrix constructor.
* Remove `omp_get_max_threads` in R glue code.
* Remove threading utilities that rely on omp global variable.
* Add num target model parameter, which is configured from input labels.
* Change elementwise metric and indexing for weights.
* Add demo.
* Add tests.
This PR changes base_margin into a 3-dim array, with one of them being reserved for multi-target classification. Also, a breaking change is made for binary serialization due to extra dimension along with a fix for saving the feature weights. Lastly, it unifies the prediction initialization between CPU and GPU. After this PR, the meta info setter in Python will be based on array interface.
* Extend array interface to handle ndarray.
The `ArrayInterface` class is extended to support multi-dim array inputs. Previously this
class handles only 2-dim (vector is also matrix). This PR specifies the expected
dimension at compile-time and the array interface can perform various checks automatically
for input data. Also, adapters like CSR are more rigorous about their input. Lastly, row
vector and column vector are handled without intervention from the caller.