541 lines
18 KiB
C++
541 lines
18 KiB
C++
/**
|
|
* Copyright 2016-2023 by XGBoost contributors
|
|
*/
|
|
#pragma once
|
|
|
|
#include <gtest/gtest.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <xgboost/base.h>
|
|
#include <xgboost/context.h>
|
|
#include <xgboost/json.h>
|
|
#include <xgboost/learner.h> // for LearnerModelParam
|
|
#include <xgboost/model.h> // for Configurable
|
|
|
|
#include <cstdint> // std::int32_t
|
|
#include <cstdio>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <thread>
|
|
#include <vector>
|
|
|
|
#include "../../src/collective/communicator-inl.h"
|
|
#include "../../src/common/common.h"
|
|
#include "../../src/data/array_interface.h"
|
|
#include "filesystem.h" // dmlc::TemporaryDirectory
|
|
#include "xgboost/linalg.h"
|
|
|
|
#if defined(__CUDACC__)
|
|
#define DeclareUnifiedTest(name) GPU ## name
|
|
#else
|
|
#define DeclareUnifiedTest(name) name
|
|
#endif
|
|
|
|
#if defined(__CUDACC__)
|
|
#define GPUIDX 0
|
|
#else
|
|
#define GPUIDX -1
|
|
#endif
|
|
|
|
#if defined(__CUDACC__)
|
|
#define DeclareUnifiedDistributedTest(name) MGPU ## name
|
|
#else
|
|
#define DeclareUnifiedDistributedTest(name) name
|
|
#endif
|
|
|
|
#if defined(__CUDACC__)
|
|
#define WORLD_SIZE_FOR_TEST (xgboost::common::AllVisibleGPUs())
|
|
#else
|
|
#define WORLD_SIZE_FOR_TEST (3)
|
|
#endif
|
|
|
|
namespace xgboost {
|
|
class ObjFunction;
|
|
class Metric;
|
|
struct LearnerModelParam;
|
|
class GradientBooster;
|
|
}
|
|
|
|
template <typename Float>
|
|
Float RelError(Float l, Float r) {
|
|
static_assert(std::is_floating_point<Float>::value);
|
|
return std::abs(1.0f - l / r);
|
|
}
|
|
|
|
bool FileExists(const std::string& filename);
|
|
|
|
void CreateSimpleTestData(const std::string& filename);
|
|
|
|
// Create a libsvm format file with 3 entries per-row. `zero_based` specifies whether it's
|
|
// 0-based indexing.
|
|
void CreateBigTestData(const std::string& filename, size_t n_entries, bool zero_based = true);
|
|
|
|
void CreateTestCSV(std::string const& path, size_t rows, size_t cols);
|
|
|
|
void CheckObjFunction(std::unique_ptr<xgboost::ObjFunction> const& obj,
|
|
std::vector<xgboost::bst_float> preds,
|
|
std::vector<xgboost::bst_float> labels,
|
|
std::vector<xgboost::bst_float> weights,
|
|
std::vector<xgboost::bst_float> out_grad,
|
|
std::vector<xgboost::bst_float> out_hess);
|
|
|
|
xgboost::Json CheckConfigReloadImpl(xgboost::Configurable* const configurable,
|
|
std::string name);
|
|
|
|
template <typename T>
|
|
xgboost::Json CheckConfigReload(std::unique_ptr<T> const& configurable,
|
|
std::string name = "") {
|
|
return CheckConfigReloadImpl(dynamic_cast<xgboost::Configurable*>(configurable.get()),
|
|
name);
|
|
}
|
|
|
|
void CheckRankingObjFunction(std::unique_ptr<xgboost::ObjFunction> const& obj,
|
|
std::vector<xgboost::bst_float> preds,
|
|
std::vector<xgboost::bst_float> labels,
|
|
std::vector<xgboost::bst_float> weights,
|
|
std::vector<xgboost::bst_uint> groups,
|
|
std::vector<xgboost::bst_float> out_grad,
|
|
std::vector<xgboost::bst_float> out_hess);
|
|
|
|
xgboost::bst_float GetMetricEval(
|
|
xgboost::Metric * metric,
|
|
xgboost::HostDeviceVector<xgboost::bst_float> const& preds,
|
|
std::vector<xgboost::bst_float> labels,
|
|
std::vector<xgboost::bst_float> weights = std::vector<xgboost::bst_float>(),
|
|
std::vector<xgboost::bst_uint> groups = std::vector<xgboost::bst_uint>(),
|
|
xgboost::DataSplitMode data_split_Mode = xgboost::DataSplitMode::kRow);
|
|
|
|
double GetMultiMetricEval(xgboost::Metric* metric,
|
|
xgboost::HostDeviceVector<xgboost::bst_float> const& preds,
|
|
xgboost::linalg::Tensor<float, 2> const& labels,
|
|
std::vector<xgboost::bst_float> weights = {},
|
|
std::vector<xgboost::bst_uint> groups = {},
|
|
xgboost::DataSplitMode data_split_Mode = xgboost::DataSplitMode::kRow);
|
|
|
|
namespace xgboost {
|
|
|
|
float GetBaseScore(Json const &config);
|
|
|
|
/*!
|
|
* \brief Linear congruential generator.
|
|
*
|
|
* The distribution defined in std is not portable. Given the same seed, it
|
|
* migth produce different outputs on different platforms or with different
|
|
* compilers. The SimpleLCG implemented here is to make sure all tests are
|
|
* reproducible.
|
|
*/
|
|
class SimpleLCG {
|
|
private:
|
|
using StateType = uint64_t;
|
|
static StateType constexpr kDefaultInit = 3;
|
|
static StateType constexpr kDefaultAlpha = 61;
|
|
static StateType constexpr kMaxValue = (static_cast<StateType>(1) << 32) - 1;
|
|
|
|
StateType state_;
|
|
StateType const alpha_;
|
|
StateType const mod_;
|
|
|
|
public:
|
|
using result_type = StateType; // NOLINT
|
|
|
|
public:
|
|
SimpleLCG() : state_{kDefaultInit}, alpha_{kDefaultAlpha}, mod_{kMaxValue} {}
|
|
SimpleLCG(SimpleLCG const& that) = default;
|
|
SimpleLCG(SimpleLCG&& that) = default;
|
|
|
|
void Seed(StateType seed) { state_ = seed % mod_; }
|
|
/*!
|
|
* \brief Initialize SimpleLCG.
|
|
*
|
|
* \param state Initial state, can also be considered as seed. If set to
|
|
* zero, SimpleLCG will use internal default value.
|
|
*/
|
|
explicit SimpleLCG(StateType state)
|
|
: state_{state == 0 ? kDefaultInit : state}, alpha_{kDefaultAlpha}, mod_{kMaxValue} {}
|
|
|
|
StateType operator()();
|
|
StateType Min() const;
|
|
StateType Max() const;
|
|
|
|
constexpr result_type static min() { return 0; }; // NOLINT
|
|
constexpr result_type static max() { return kMaxValue; } // NOLINT
|
|
};
|
|
|
|
template <typename ResultT>
|
|
class SimpleRealUniformDistribution {
|
|
private:
|
|
ResultT const lower_;
|
|
ResultT const upper_;
|
|
|
|
/*! \brief Over-simplified version of std::generate_canonical. */
|
|
template <size_t Bits, typename GeneratorT>
|
|
ResultT GenerateCanonical(GeneratorT* rng) const {
|
|
static_assert(std::is_floating_point<ResultT>::value,
|
|
"Result type must be floating point.");
|
|
long double const r = (static_cast<long double>(rng->Max())
|
|
- static_cast<long double>(rng->Min())) + 1.0L;
|
|
auto const log2r = static_cast<size_t>(std::log(r) / std::log(2.0L));
|
|
size_t m = std::max<size_t>(1UL, (Bits + log2r - 1UL) / log2r);
|
|
ResultT sum_value = 0, r_k = 1;
|
|
|
|
for (size_t k = m; k != 0; --k) {
|
|
sum_value += static_cast<ResultT>((*rng)() - rng->Min()) * r_k;
|
|
r_k *= r;
|
|
}
|
|
|
|
ResultT res = sum_value / r_k;
|
|
return res;
|
|
}
|
|
|
|
public:
|
|
SimpleRealUniformDistribution(ResultT l, ResultT u) :
|
|
lower_{l}, upper_{u} {}
|
|
|
|
template <typename GeneratorT>
|
|
ResultT operator()(GeneratorT* rng) const {
|
|
ResultT tmp = GenerateCanonical<std::numeric_limits<ResultT>::digits,
|
|
GeneratorT>(rng);
|
|
auto ret = (tmp * (upper_ - lower_)) + lower_;
|
|
// Correct floating point error.
|
|
return std::max(ret, lower_);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
Json GetArrayInterface(HostDeviceVector<T> const* storage, size_t rows, size_t cols) {
|
|
Json array_interface{Object()};
|
|
array_interface["data"] = std::vector<Json>(2);
|
|
if (storage->DeviceCanRead()) {
|
|
array_interface["data"][0] = Integer{reinterpret_cast<int64_t>(storage->ConstDevicePointer())};
|
|
array_interface["stream"] = nullptr;
|
|
} else {
|
|
array_interface["data"][0] = Integer{reinterpret_cast<int64_t>(storage->ConstHostPointer())};
|
|
}
|
|
array_interface["data"][1] = Boolean(false);
|
|
|
|
array_interface["shape"] = std::vector<Json>(2);
|
|
array_interface["shape"][0] = rows;
|
|
array_interface["shape"][1] = cols;
|
|
|
|
char t = linalg::detail::ArrayInterfaceHandler::TypeChar<T>();
|
|
array_interface["typestr"] = String(std::string{"<"} + t + std::to_string(sizeof(T)));
|
|
array_interface["version"] = 3;
|
|
return array_interface;
|
|
}
|
|
|
|
// Generate in-memory random data without using DMatrix.
|
|
class RandomDataGenerator {
|
|
bst_row_t rows_;
|
|
size_t cols_;
|
|
float sparsity_;
|
|
|
|
float lower_{0.0f};
|
|
float upper_{1.0f};
|
|
|
|
bst_target_t n_targets_{1};
|
|
|
|
std::int32_t device_{Context::kCpuId};
|
|
std::uint64_t seed_{0};
|
|
SimpleLCG lcg_;
|
|
|
|
std::size_t bins_{0};
|
|
std::vector<FeatureType> ft_;
|
|
bst_cat_t max_cat_;
|
|
|
|
Json ArrayInterfaceImpl(HostDeviceVector<float>* storage, size_t rows, size_t cols) const;
|
|
|
|
public:
|
|
RandomDataGenerator(bst_row_t rows, size_t cols, float sparsity)
|
|
: rows_{rows}, cols_{cols}, sparsity_{sparsity}, lcg_{seed_} {}
|
|
|
|
RandomDataGenerator& Lower(float v) {
|
|
lower_ = v;
|
|
return *this;
|
|
}
|
|
RandomDataGenerator& Upper(float v) {
|
|
upper_ = v;
|
|
return *this;
|
|
}
|
|
RandomDataGenerator& Device(int32_t d) {
|
|
device_ = d;
|
|
return *this;
|
|
}
|
|
RandomDataGenerator& Seed(uint64_t s) {
|
|
seed_ = s;
|
|
lcg_.Seed(seed_);
|
|
return *this;
|
|
}
|
|
RandomDataGenerator& Bins(size_t b) {
|
|
bins_ = b;
|
|
return *this;
|
|
}
|
|
RandomDataGenerator& Type(common::Span<FeatureType> ft) {
|
|
CHECK_EQ(ft.size(), cols_);
|
|
ft_.resize(ft.size());
|
|
std::copy(ft.cbegin(), ft.cend(), ft_.begin());
|
|
return *this;
|
|
}
|
|
RandomDataGenerator& MaxCategory(bst_cat_t cat) {
|
|
max_cat_ = cat;
|
|
return *this;
|
|
}
|
|
RandomDataGenerator& Targets(bst_target_t n_targets) {
|
|
n_targets_ = n_targets;
|
|
return *this;
|
|
}
|
|
|
|
void GenerateDense(HostDeviceVector<float>* out) const;
|
|
|
|
std::string GenerateArrayInterface(HostDeviceVector<float>* storage) const;
|
|
|
|
/*!
|
|
* \brief Generate batches of array interface stored in consecutive memory.
|
|
*
|
|
* \param storage The consecutive momory used to store the arrays.
|
|
* \param batches Number of batches.
|
|
*
|
|
* \return A vector storing JSON string representation of interface for each batch, and
|
|
* a single JSON string representing the consecutive memory as a whole
|
|
* (combining all the batches).
|
|
*/
|
|
std::pair<std::vector<std::string>, std::string> GenerateArrayInterfaceBatch(
|
|
HostDeviceVector<float>* storage, size_t batches) const;
|
|
|
|
std::string GenerateColumnarArrayInterface(std::vector<HostDeviceVector<float>>* data) const;
|
|
|
|
void GenerateCSR(HostDeviceVector<float>* value, HostDeviceVector<bst_row_t>* row_ptr,
|
|
HostDeviceVector<bst_feature_t>* columns) const;
|
|
|
|
std::shared_ptr<DMatrix> GenerateDMatrix(bool with_label = false, bool float_label = true,
|
|
size_t classes = 1) const;
|
|
#if defined(XGBOOST_USE_CUDA)
|
|
std::shared_ptr<DMatrix> GenerateDeviceDMatrix();
|
|
#endif
|
|
std::shared_ptr<DMatrix> GenerateQuantileDMatrix();
|
|
};
|
|
|
|
// Generate an empty DMatrix, mostly for its meta info.
|
|
inline std::shared_ptr<DMatrix> EmptyDMatrix() {
|
|
return RandomDataGenerator{0, 0, 0.0}.GenerateDMatrix();
|
|
}
|
|
|
|
inline std::vector<float>
|
|
GenerateRandomCategoricalSingleColumn(int n, size_t num_categories) {
|
|
std::vector<float> x(n);
|
|
std::mt19937 rng(0);
|
|
std::uniform_int_distribution<size_t> dist(0, num_categories - 1);
|
|
std::generate(x.begin(), x.end(), [&]() { return dist(rng); });
|
|
// Make sure each category is present
|
|
for(size_t i = 0; i < num_categories; i++) {
|
|
x[i] = i;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
std::shared_ptr<DMatrix> GetDMatrixFromData(const std::vector<float>& x, std::size_t num_rows,
|
|
bst_feature_t num_columns);
|
|
|
|
/**
|
|
* \brief Create Sparse Page using data iterator.
|
|
*
|
|
* \param n_samples Total number of rows for all batches combined.
|
|
* \param n_features Number of features
|
|
* \param n_batches Number of batches
|
|
* \param prefix Cache prefix, can be used for specifying file path.
|
|
*
|
|
* \return A Sparse DMatrix with n_batches.
|
|
*/
|
|
std::unique_ptr<DMatrix> CreateSparsePageDMatrix(bst_row_t n_samples, bst_feature_t n_features,
|
|
size_t n_batches, std::string prefix = "cache");
|
|
|
|
/**
|
|
* Deprecated, stop using it
|
|
*/
|
|
std::unique_ptr<DMatrix> CreateSparsePageDMatrix(size_t n_entries, std::string prefix = "cache");
|
|
|
|
/**
|
|
* Deprecated, stop using it
|
|
*
|
|
* \brief Creates dmatrix with some records, each record containing random number of
|
|
* features in [1, n_cols]
|
|
*
|
|
* \param n_rows Number of records to create.
|
|
* \param n_cols Max number of features within that record.
|
|
* \param page_size Sparse page size for the pages within the dmatrix. If page size is 0
|
|
* then the entire dmatrix is resident in memory; else, multiple sparse pages
|
|
* of page size are created and backed to disk, which would have to be
|
|
* streamed in at point of use.
|
|
* \param deterministic The content inside the dmatrix is constant for this configuration, if true;
|
|
* else, the content changes every time this method is invoked
|
|
*
|
|
* \return The new dmatrix.
|
|
*/
|
|
std::unique_ptr<DMatrix> CreateSparsePageDMatrixWithRC(
|
|
size_t n_rows, size_t n_cols, size_t page_size, bool deterministic,
|
|
const dmlc::TemporaryDirectory& tempdir = dmlc::TemporaryDirectory());
|
|
|
|
std::unique_ptr<GradientBooster> CreateTrainedGBM(std::string name, Args kwargs, size_t kRows,
|
|
size_t kCols,
|
|
LearnerModelParam const* learner_model_param,
|
|
Context const* generic_param);
|
|
|
|
inline Context CreateEmptyGenericParam(int gpu_id) {
|
|
xgboost::Context tparam;
|
|
std::vector<std::pair<std::string, std::string>> args{{"gpu_id", std::to_string(gpu_id)}};
|
|
tparam.Init(args);
|
|
return tparam;
|
|
}
|
|
|
|
/**
|
|
* \brief Make a context that uses CUDA.
|
|
*/
|
|
inline Context MakeCUDACtx(std::int32_t device) { return Context{}.MakeCUDA(device); }
|
|
|
|
inline HostDeviceVector<GradientPair> GenerateRandomGradients(const size_t n_rows,
|
|
float lower= 0.0f, float upper = 1.0f) {
|
|
xgboost::SimpleLCG gen;
|
|
xgboost::SimpleRealUniformDistribution<bst_float> dist(lower, upper);
|
|
std::vector<GradientPair> h_gpair(n_rows);
|
|
for (auto &gpair : h_gpair) {
|
|
bst_float grad = dist(&gen);
|
|
bst_float hess = dist(&gen);
|
|
gpair = GradientPair(grad, hess);
|
|
}
|
|
HostDeviceVector<GradientPair> gpair(h_gpair);
|
|
return gpair;
|
|
}
|
|
|
|
typedef void *DMatrixHandle; // NOLINT(*);
|
|
|
|
class ArrayIterForTest {
|
|
protected:
|
|
HostDeviceVector<float> data_;
|
|
size_t iter_{0};
|
|
DMatrixHandle proxy_;
|
|
std::unique_ptr<RandomDataGenerator> rng_;
|
|
|
|
std::vector<std::string> batches_;
|
|
std::string interface_;
|
|
size_t rows_;
|
|
size_t cols_;
|
|
size_t n_batches_;
|
|
|
|
public:
|
|
size_t static constexpr Rows() { return 1024; }
|
|
size_t static constexpr Batches() { return 100; }
|
|
size_t static constexpr Cols() { return 13; }
|
|
|
|
public:
|
|
std::string AsArray() const { return interface_; }
|
|
|
|
virtual int Next() = 0;
|
|
virtual void Reset() { iter_ = 0; }
|
|
size_t Iter() const { return iter_; }
|
|
auto Proxy() -> decltype(proxy_) { return proxy_; }
|
|
|
|
explicit ArrayIterForTest(float sparsity, size_t rows, size_t cols, size_t batches);
|
|
/**
|
|
* \brief Create iterator with user provided data.
|
|
*/
|
|
explicit ArrayIterForTest(Context const* ctx, HostDeviceVector<float> const& data,
|
|
std::size_t n_samples, bst_feature_t n_features, std::size_t n_batches);
|
|
virtual ~ArrayIterForTest();
|
|
};
|
|
|
|
class CudaArrayIterForTest : public ArrayIterForTest {
|
|
public:
|
|
explicit CudaArrayIterForTest(float sparsity, size_t rows = Rows(), size_t cols = Cols(),
|
|
size_t batches = Batches());
|
|
int Next() override;
|
|
~CudaArrayIterForTest() override = default;
|
|
};
|
|
|
|
class NumpyArrayIterForTest : public ArrayIterForTest {
|
|
public:
|
|
explicit NumpyArrayIterForTest(float sparsity, size_t rows = Rows(), size_t cols = Cols(),
|
|
size_t batches = Batches());
|
|
explicit NumpyArrayIterForTest(Context const* ctx, HostDeviceVector<float> const& data,
|
|
std::size_t n_samples, bst_feature_t n_features,
|
|
std::size_t n_batches)
|
|
: ArrayIterForTest{ctx, data, n_samples, n_features, n_batches} {}
|
|
int Next() override;
|
|
~NumpyArrayIterForTest() override = default;
|
|
};
|
|
|
|
void DMatrixToCSR(DMatrix *dmat, std::vector<float> *p_data,
|
|
std::vector<size_t> *p_row_ptr,
|
|
std::vector<bst_feature_t> *p_cids);
|
|
|
|
typedef void *DataIterHandle; // NOLINT(*)
|
|
|
|
inline void Reset(DataIterHandle self) {
|
|
static_cast<ArrayIterForTest*>(self)->Reset();
|
|
}
|
|
|
|
inline int Next(DataIterHandle self) {
|
|
return static_cast<ArrayIterForTest*>(self)->Next();
|
|
}
|
|
|
|
class RMMAllocator;
|
|
using RMMAllocatorPtr = std::unique_ptr<RMMAllocator, void(*)(RMMAllocator*)>;
|
|
RMMAllocatorPtr SetUpRMMResourceForCppTests(int argc, char** argv);
|
|
|
|
/*
|
|
* \brief Make learner model param
|
|
*/
|
|
inline LearnerModelParam MakeMP(bst_feature_t n_features, float base_score, uint32_t n_groups,
|
|
int32_t device = Context::kCpuId) {
|
|
size_t shape[1]{1};
|
|
LearnerModelParam mparam(n_features, linalg::Tensor<float, 1>{{base_score}, shape, device},
|
|
n_groups, 1, MultiStrategy::kOneOutputPerTree);
|
|
return mparam;
|
|
}
|
|
|
|
inline std::int32_t AllThreadsForTest() { return Context{}.Threads(); }
|
|
|
|
template <typename Function, typename... Args>
|
|
void RunWithInMemoryCommunicator(int32_t world_size, Function&& function, Args&&... args) {
|
|
auto run = [&](auto rank) {
|
|
Json config{JsonObject()};
|
|
config["xgboost_communicator"] = String("in-memory");
|
|
config["in_memory_world_size"] = world_size;
|
|
config["in_memory_rank"] = rank;
|
|
xgboost::collective::Init(config);
|
|
|
|
std::forward<Function>(function)(std::forward<Args>(args)...);
|
|
|
|
xgboost::collective::Finalize();
|
|
};
|
|
#if defined(_OPENMP)
|
|
#pragma omp parallel num_threads(world_size)
|
|
{
|
|
auto rank = omp_get_thread_num();
|
|
run(rank);
|
|
}
|
|
#else
|
|
std::vector<std::thread> threads;
|
|
for (auto rank = 0; rank < world_size; rank++) {
|
|
threads.emplace_back(run, rank);
|
|
}
|
|
for (auto& thread : threads) {
|
|
thread.join();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
class DeclareUnifiedDistributedTest(MetricTest) : public ::testing::Test {
|
|
protected:
|
|
int world_size_;
|
|
|
|
void SetUp() override {
|
|
world_size_ = WORLD_SIZE_FOR_TEST;
|
|
if (world_size_ <= 1) {
|
|
GTEST_SKIP() << "Skipping MGPU test with # GPUs = " << world_size_;
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace xgboost
|