A new parameter `custom_metric` is added to `train` and `cv` to distinguish the behaviour from the old `feval`. And `feval` is deprecated. The new `custom_metric` receives transformed prediction when the built-in objective is used. This enables XGBoost to use cost functions from other libraries like scikit-learn directly without going through the definition of the link function.
`eval_metric` and `early_stopping_rounds` in sklearn interface are moved from `fit` to `__init__` and is now saved as part of the scikit-learn model. The old ones in `fit` function are now deprecated. The new `eval_metric` in `__init__` has the same new behaviour as `custom_metric`.
Added more detailed documents for the behaviour of custom objective and metric.
* Add a new API function for predicting on `DMatrix`. This function aligns
with rest of the `XGBoosterPredictFrom*` functions on semantic of function
arguments.
* Purge `ntree_limit` from libxgboost, use iteration instead.
* [dask] Use `inplace_predict` by default for dask sklearn models.
* [dask] Run prediction shape inference on worker instead of client.
The breaking change is in the Python sklearn `apply` function, I made it to be
consistent with other prediction functions where `best_iteration` is used by
default.
The old (before fix) best_ntree_limit ignores the num_class parameters, which is incorrect. In before we workarounded it in c++ layer to avoid possible breaking changes on other language bindings. But the Python interpretation stayed incorrect. The PR fixed that in Python to consider num_class, but didn't remove the old workaround, so tree calculation in predictor is incorrect, see PredictBatch in CPUPredictor.
* Initial support for distributed LTR using dask.
* Support `qid` in libxgboost.
* Refactor `predict` and `n_features_in_`, `best_[score/iteration/ntree_limit]`
to avoid duplicated code.
* Define `DaskXGBRanker`.
The dask ranker doesn't support group structure, instead it uses query id and
convert to group ptr internally.
* Implement early stopping with training continuation.
* Add new C API for obtaining boosted rounds.
* Fix off by 1 in `save_best`.
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
This PR is meant the end the confusion around best_ntree_limit and unify model slicing. We have multi-class and random forests, asking users to understand how to set ntree_limit is difficult and error prone.
* Implement the save_best option in early stopping.
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
* Simplify Scikit-Learn parameter management.
* Copy base class for removing duplicated parameter signatures.
* Set all parameters to None.
* Handle None in set_param.
* Extract the doc.
Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>
* Remove `learning_rates`.
It's been deprecated since we have callback.
* Set `before_iteration` of `reset_learning_rate` to False to preserve
the initial learning rate, and comply to the term "reset".
Closes#4709.
* Tests for various `tree_method`.
* Fix#4630, #4421: Preserve correct ordering between metrics, and always use last metric for early stopping
* Clarify semantics of early stopping in presence of multiple valid sets and metrics
* Add a test
* Fix lint
* adding support for matrix slicing with query ID for cross-validation
* hail mary test of unrar installation for windows tests
* trying to modify tests to run in Github CI
* Remove dependency on wget and unrar
* Save error log from R test
* Relax assertion in test_training
* Use int instead of bool in C function interface
* Revise R interface
* Add XGDMatrixSliceDMatrixEx and keep old XGDMatrixSliceDMatrix for API compatibility
* Add scikit-learn tests
Goal is to pass scikit-learn's check_estimator() for XGBClassifier,
XGBRegressor, and XGBRanker. It is actually not possible to do so
entirely, since check_estimator() assumes that NaN is disallowed,
but XGBoost allows for NaN as missing values. However, it is always
good ideas to add some checks inspired by check_estimator().
* Fix lint
* Fix lint
* Add XGBRanker to Python API doc
* Show inherited members of XGBRegressor in API doc, since XGBRegressor uses default methods from XGBModel
* Add table of contents to Python API doc
* Skip JVM doc download if not available
* Show inherited members for XGBRegressor and XGBRanker
* Expose XGBRanker to Python XGBoost module directory
* Add docstring to XGBRegressor.predict() and XGBRanker.predict()
* Fix rendering errors in Python docstrings
* Fix lint
* allow arbitrary cross validation fold indices
- use training indices passed to `folds` parameter in `training.cv`
- update doc string
* add tests for arbitrary fold indices
* repared serialization after update process; fixes#2545
* non-stratified folds in python could omit some data instances
* Makefile: fixes for older makes on windows; clean R-package too
* make cub to be a shallow submodule
* improve $(MAKE) recovery
* option to shuffle data in mknfolds
* removed possibility to run as stand alone test
* split function def in 2 lines for lint
* option to shuffle data in mknfolds
* removed possibility to run as stand alone test
* split function def in 2 lines for lint
* Fix various typos
* Add override to functions that are overridden
gcc gives warnings about functions that are being overridden by not
being marked as oveirridden. This fixes it.
* Use bst_float consistently
Use bst_float for all the variables that involve weight,
leaf value, gradient, hessian, gain, loss_chg, predictions,
base_margin, feature values.
In some cases, when due to additions and so on the value can
take a larger value, double is used.
This ensures that type conversions are minimal and reduces loss of
precision.
* Allow using learning_rates parameter when doing CV
- Create a new `callback_cv` method working when called from `xgb.cv()`
- Rename existing `callback` into `callback_train` and make it the default callback
- Get the logic out of the callbacks and place it into a common helper
* Add a learning_rates parameter to cv()
* lint
* remove caller explicit reference
* callback is aware of its calling context
* remove caller argument
* remove learning_rates param
* restore learning_rates for training, but deprecated
* lint
* lint line too long
* quick example for predefined callbacks