* Revert "Add scikit-learn as dependency for doc build (#3677)"

This reverts commit 308f664ade0547242608e21f6198c895415f03da.

* Revert "Add scikit-learn tests (#3674)"

This reverts commit d176a0fbc8165e3afe3e42ff464ab7b253211555.
This commit is contained in:
Philip Hyunsu Cho 2018-09-06 20:43:17 -07:00 committed by GitHub
parent 8dac0d1009
commit 5a8bbb39a1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 5 additions and 36 deletions

View File

@ -41,7 +41,7 @@ sys.path.insert(0, curr_path)
# -- mock out modules
import mock
MOCK_MODULES = ['scipy', 'scipy.sparse', 'pandas']
MOCK_MODULES = ['scipy', 'scipy.sparse', 'sklearn', 'pandas']
for mod_name in MOCK_MODULES:
sys.modules[mod_name] = mock.Mock()

View File

@ -6,4 +6,3 @@ sh>=1.12.14
matplotlib>=2.1
graphviz
numpy
scikit-learn

View File

@ -9,6 +9,7 @@ import ctypes
import os
import re
import sys
import numpy as np
import scipy.sparse
@ -373,15 +374,11 @@ class DMatrix(object):
if label is not None:
if isinstance(label, np.ndarray):
self.set_label_npy2d(label)
elif getattr(label, '__array__', None) is not None:
self.set_label_npy2d(label.__array__())
else:
self.set_label(label)
if weight is not None:
if isinstance(weight, np.ndarray):
self.set_weight_npy2d(weight)
elif getattr(weight, '__array__', None) is not None:
self.set_weight_npy2d(weight.__array__())
else:
self.set_weight(weight)
@ -431,7 +428,7 @@ class DMatrix(object):
and type if memory use is a concern.
"""
if len(mat.shape) != 2:
raise ValueError('Input numpy.ndarray must be 2 dimensional. Reshape your data.')
raise ValueError('Input numpy.ndarray must be 2 dimensional')
# flatten the array by rows and ensure it is float32.
# we try to avoid data copies if possible (reshape returns a view when possible
# and we explicitly tell np.array to try and avoid copying)

View File

@ -1,12 +1,10 @@
# coding: utf-8
# pylint: disable=too-many-arguments, too-many-locals, invalid-name, fixme, E0012, R0912, C0302
# pylint: disable=too-many-arguments, too-many-locals, invalid-name, fixme, E0012, R0912
"""Scikit-Learn Wrapper interface for XGBoost."""
from __future__ import absolute_import
import numpy as np
import warnings
from sklearn.exceptions import NotFittedError
from sklearn.exceptions import DataConversionWarning
from .core import Booster, DMatrix, XGBoostError
from .training import train
@ -16,16 +14,6 @@ from .compat import (SKLEARN_INSTALLED, XGBModelBase,
XGBClassifierBase, XGBRegressorBase, XGBLabelEncoder)
def _check_label_1d(label):
"""Produce warning if label is not 1D array"""
label = np.array(label, copy=False, dtype=np.float32)
if len(label.shape) == 2 and label.shape[1] == 1:
warnings.warn('A column-vector y was passed when a 1d array was'
' expected. Please change the shape of y to '
'(n_samples, ), for example using ravel().',
DataConversionWarning, stacklevel=2)
def _objective_decorator(func):
"""Decorate an objective function
@ -190,7 +178,7 @@ class XGBModel(XGBModelBase):
booster : a xgboost booster of underlying model
"""
if self._Booster is None:
raise NotFittedError('need to call fit or load_model beforehand')
raise XGBoostError('need to call fit or load_model beforehand')
return self._Booster
def get_params(self, deep=False):
@ -298,7 +286,6 @@ class XGBModel(XGBModelBase):
file name of stored xgb model or 'Booster' instance Xgb model to be
loaded before training (allows training continuation).
"""
_check_label_1d(label=y)
if sample_weight is not None:
trainDmatrix = DMatrix(X, label=y, weight=sample_weight,
missing=self.missing, nthread=self.n_jobs)
@ -549,7 +536,6 @@ class XGBClassifier(XGBModel, XGBClassifierBase):
file name of stored xgb model or 'Booster' instance Xgb model to be
loaded before training (allows training continuation).
"""
_check_label_1d(label=y)
evals_result = {}
self.classes_ = np.unique(y)
self.n_classes_ = len(self.classes_)
@ -926,7 +912,6 @@ class XGBRanker(XGBModel):
file name of stored xgb model or 'Booster' instance Xgb model to be
loaded before training (allows training continuation).
"""
_check_label_1d(label=y)
# check if group information is provided
if group is None:
raise ValueError("group is required for ranking task")

View File

@ -203,18 +203,6 @@ def train(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None,
DeprecationWarning)
callbacks.append(callback.reset_learning_rate(learning_rates))
nrow = dtrain.num_row()
ncol = dtrain.num_col()
if nrow <= 0:
raise ValueError('{} row(s) (shape=({}, {})) while a minimum of 1 is required.'
.format(nrow, nrow, ncol))
if ncol <= 0:
raise ValueError('{} feature(s) (shape=({}, {})) while a minimum of 1 is required.'
.format(ncol, nrow, ncol))
label = dtrain.get_label()
if nrow != len(label):
raise ValueError('Label must have same length as the number of data rows')
return _train_internal(params, dtrain,
num_boost_round=num_boost_round,
evals=evals,