* Fix a unit test on CLI, to handle RC versions
* [CI] Use mgpu machine to run gpu hist unit tests
* [CI] Build GPU-enabled JAR artifact and deploy to xgboost-maven-repo
* fixed some endian issues
* Use dmlc::ByteSwap() to simplify code
* Fix lint check
* [CI] Add test for s390x
* Download latest CMake on s390x
* Fix a bug in my code
* Save magic number in dmatrix with byteswap on big-endian machine
* Save version in binary with byteswap on big-endian machine
* Load scalar with byteswap in MetaInfo
* Add a debugging message
* Handle arrays correctly when byteswapping
* EOF can also be 255
* Handle magic number in MetaInfo carefully
* Skip Tree.Load test for big-endian, since the test manually builds little-endian binary model
* Handle missing packages in Python tests
* Don't use boto3 in model compatibility tests
* Add s390 Docker file for local testing
* Add model compatibility tests
* Add R compatibility test
* Revert "Add R compatibility test"
This reverts commit c2d2bdcb7dbae133cbb927fcd20f7e83ee2b18a8.
Co-authored-by: Qi Zhang <q.zhang@ibm.com>
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
* Publish artifacts only on the master and release branches
* Build CUDA only for Compute Capability 7.5 when building PRs
* Run all Windows jobs in a single worker image
* Build nightly XGBoost4J SNAPSHOT JARs with Scala 2.12 only
* Show skipped Python tests on Windows
* Make Graphviz optional for Python tests
* Add back C++ tests
* Unstash xgboost_cpp_tests
* Fix label to CUDA 10.1
* Install cuPy for CUDA 10.1
* Install jsonschema
* Address reviewer's feedback
* Implement GK sketching on GPU.
* Strong tests on quantile building.
* Handle sparse dataset by binary searching the column index.
* Hypothesis test on dask.
* Add thread local return entry for DMatrix.
* Save feature name and feature type in binary file.
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
* Increased error in coordinate is mostly due to floating point error.
* Shotgun uses Hogwild!, which is non-deterministic and can have even greater
floating point error.
* Use hypothesis
* Allow int64 array interface for groups
* Add packages to Windows CI
* Add to travis
* Make sure device index is set correctly
* Fix dask-cudf test
* appveyor
* Set output margin to True for custom objective in Python and R.
* Add a demo for writing multi-class custom objective function.
* Run tests on selected demos.
* Add inplace prediction for dask-cudf.
* Remove Dockerfile.release, since it's not used anywhere
* Use Conda exclusively in CUDF and GPU containers
* Improve cupy memory copying.
* Add skip marks to tests.
* Add mgpu-cudf category on the CI to run all distributed tests.
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
* Robust regularization of AFT gradient and hessian
* Fix AFT doc; expose it to tutorial TOC
* Apply robust regularization to uncensored case too
* Revise unit test slightly
* Fix lint
* Update test_survival.py
* Use GradientPairPrecise
* Remove unused variables
Normal prediction with DMatrix is now thread safe with locks. Added inplace prediction is lock free thread safe.
When data is on device (cupy, cudf), the returned data is also on device.
* Implementation for numpy, csr, cudf and cupy.
* Implementation for dask.
* Remove sync in simple dmatrix.